搜索

x
中国物理学会期刊

基于薄膜铌酸锂的模式色散相位匹配单光子源

CSTR: 32037.14.aps.72.20230743

Mode-dispersion phase matching single photon source based on thin-film lithium niobate

CSTR: 32037.14.aps.72.20230743
PDF
HTML
导出引用
  • 薄膜铌酸锂光学芯片因低损耗、高非线性系数及高电光调制带宽等特性, 有望成为开展集成光学量子信息研究的理想实验平台. 然而, 到目前为止, 基于薄膜铌酸锂的单光子源普遍采用周期性极化准相位匹配技术, 该技术要求精确地制备电极并对铌酸锂波导进行周期性极化, 工艺复杂且对加工精度要求较高. 本文提出了一种基于模式色散相位匹配的薄膜铌酸锂单光子源器件. 该器件无需制作电极, 具备加工简便和集成度更高的优势, 同时单光子产率可达3.8×10⁷/(s·mW), 能够满足光学量子信息处理的需求. 此器件有望替代传统准相位匹配单光子源, 进一步推动基于薄膜铌酸锂芯片的光学量子信息研究的发展.

     

    In the domain of integrated quantum photonics, the burgeoning superiority of lithium niobate’s second-order nonlinearity in electro-optic modulation makes thin-film lithium niobate a leading quantum photonic platform after silicon. To date, single-photon sources using thin-film lithium niobate has mainly adopted periodic polarization quasi-phase matching technology, which requires the preparation of complex electrodes for domain inversion in the waveguide to realize quasi-phase matching. This method inevitably introduces complexity, such as complex processing methods, enlarged polarization regions, and compromised integration density. With the development of quantum information technology, the ever-increasing degree of integration constantly creates new demands. Consequently, the development of a streamlined, high-efficiency quantum light source on a lithium niobate platform is a pressing issue. In this study, we propose a novel thin-film lithium niobate parametric down-conversion single-photon source based on mode dispersion phase matching theory. The strategy is different from conventional strategies that utilize periodic polarization to generate single-photon sources in thin-film lithium niobate devices. In contrast to traditional quasi-phase matching techniques that utilize the phase matching between pump fundamental mode light and parametric fundamental mode light, our method employs the phase matching between the pump light’s higher-order mode and the parametric light’s fundamental mode. The pump light’s higher-order mode is obtained by designing an asymmetric directional coupler. The device’s single-photon yield can attain 3.8\times10^7/(s·mW), satisfying the requirements for optical quantum information processing. This innovative solution is expected to replace the traditional quasi-phase-matching single-photon sources, thus further promoting the study of optical quantum information based on thin-film lithium niobate chips.

     

    目录

    /

    返回文章
    返回