搜索

x
中国物理学会期刊

基于平面电极的非球面双液体透镜的设计与分析

CSTR: 32037.14.aps.72.20230758

Design and analysis of aspherical double-liquid lens based on planar electrode

CSTR: 32037.14.aps.72.20230758
PDF
HTML
导出引用
  • 为了研究易于实现、结构简单的非球面液体透镜结构, 应用介电泳效应, 设计了一款基于平面电极的非球面双液体透镜. 利用Comsol, Matlab和Zemax软件, 建立了所提出的非球面双液体透镜模型, 分析了其在不同电压下的面型变化与成像特点, 并与球面的双液体透镜模型进行了比较分析. 结果表明, 非球面双液体透镜的变焦范围大于球面的, 前者的成像质量亦优于后者. 而且, 通过该非球面双液体透镜的器件制备与初步实验分析, 获得了其成像分辨率可达40.318 lp/mm的结果.

     

    In order to study an aspherical liquid lens with simple structure and easy realization, an aspherical double-liquid lens based on planar electrode is designed based on the dielectrophoretic effect. The droplet in the dielectric electrophoretic liquid lens is polarized in the electric field and moves towards the higher electric field strength under the action of the dielectrophoresis force. With the change of the applied voltage, the dielectrophoresis force also changes, thus the contact angle of the droplet at the solid-liquid interface changes. Firstly, the models of the aspherical double-liquid lens under different voltages are established with Comsol software, and the interfacial profile data are obtained. Then the aspherical coefficients and the surface type of the fitted interface are obtained with Matlab software. Finally, the corresponding optical model of double-liquid lens is established with Zemax software. The variable range of focal lengths and root mean square (RMS) radii of the aspherical double-liquid lens at different voltages are obtained. In order to further study the characteristics of the aspherical double-liquid lens, it is compared with a spherical double-liquid lens model. Based on the contact angle theory of liquid lens and Gaussian optics theory, the relationship between the interfacial curvature radius of the spherical liquid lens and the applied voltage, and the relationship between the focal length and the applied voltage are obtained, respectively. The liquid material, cavity structure and droplet are the same as those of the aspherical lens. The corresponding spherical double-liquid lens model is established according to the two expressions relating to Zemax, and the voltage value is the same as that of the aspherical lens. Thus, the variable ranges of focal length and RMS radius in the spot diagram of the spherical double-liquid lenses at different voltages are obtained. Then, they are compared with those of aspherical double-liquid lens, and the results show that the variable range of focal length of the aspherical double-liquid lens is larger than that of the spherical double-liquid lens, and the imaging quality of the former is better than that of the latter. Moreover, through the device fabrication and preliminary experimental analysis of the aspherical double-liquid lens, the imaging resolution can reach 40.318 lp/mm. The aspherical double-liquid lens proposed in this work has the characteristics of simple structure and easy realization, which can provide a new scheme for high-quality imaging of liquid lens and its applications, and can expand the application scope of liquid lens.

     

    目录

    /

    返回文章
    返回