-
电润湿是指通过改变作用于液体-固体电极间的电势, 来影响固体和液体间的界面张力, 从而改变固液界面的润湿性, 即接触角, 使液滴产生形变、位移的现象. 电润湿电子纸显示是基于快速响应微流体操控技术的新型反射式“类纸”显示技术. 该技术拥有已商业化的电泳电子纸显示产品低能耗、视觉健康、可柔性等优点, 同时突破了“彩色”和“视频播放”两项当前束缚电子纸显示技术应用领域的瓶颈. 未来, 电润湿电子纸显示将为我国军用、民用市场提供全天候“绿色”显示产品, 具有千亿规模的直接市场和巨大产业辐射力. 本文对电润湿显示器件中涉及的多个物理方向, 特别是润湿与电润湿、两相流体力学、微观与界面物理、光物理、电介质物理、热物理、瞬态物理等, 进行了系统综述; 并且对基本器件工作原理、微观与介观物理图像、器件运行内在机制、器件可靠性等进行了全面介绍.Electrowetting refers to the phenomenon of modifying the surface tension between a liquid and a solid by adjusting the externally applied electric potential between the liquid and solid electrodes, thereby changing the contact angle between the two and causing a deformation and displacement of the droplets. Electrowetting electronic paper display is a new reflective “paper-like” display technology based on a rapid response microfluidic control technology. It has the advantages of low energy consumption, visual health, and flexibility of commercial electrophoretic electronic paper display products, while breaking through the bottlenecks of “full-color” and “video-speed response” that currently restrict the application of electronic paper display technology. In this paper, several physical directions involved in electrowetting display devices, especially wetting and electrowetting, binary phase fluid mechanics, microscopic and interfacial physics, photophysics, dielectric physics, thermophysics, and transient physics, are systematically reviewed; the basic principles of device operation, microscopic and mesoscopic physical pictures, internal mechanisms of device operation, and device reliability are also discussed in detail.
-
Keywords:
- electrowetting /
- device physics /
- reflective display
[1] Lueder E, Knoll P, Lee S H 2022 Liquid Crystal Displays: Addressing Schemes and ElectroOptical Effects (3rd Ed.) (Hoboken, United States: John Wiley & Sons Ltd.
[2] Chen H W, Lee J H, Lin B Y, Chen S, Wu S T 2018 Light-Sci. Appl. 7 17168
[3] Tsujimura T 2017 OLED Displays Fundamentals and Applications (2nd Ed.) (Hoboken, United States: John Wiley & Sons Ltd.
[4] Shu Y, Lin X, Qin H, Hu Z, Jin Y, Peng X 2020 Angew. Chem. Int. Ed. 59 22312Google Scholar
[5] 周国富 2021 电子纸显示技术 (北京: 科学出版社)
Zhou G 2021 Electronic Paper Display Technology (Beijing: Science Press
[6] Yang B R 2022 E-Paper Displays (Hoboken, United States: John Wiley & Sons Ltd.
[7] Rogers J A 2001 Science 291 1502Google Scholar
[8] Shui L, Hayes R A, Jin M, Zhang X, Bai P, van den Berg A, Zhou G 2014 Lab Chip 14 2374Google Scholar
[9] Bhowmik A K, Li Z, Bos P J 2008 Mobile Displays: Technology and Applications (Hoboken, United States: John Wiley & Sons Ltd.
[10] Heikenfeld J, Drzaic P, Yeo J S, Koch T 2011 J. Soc. Inf. Display 19 129Google Scholar
[11] Beni G, Hackwood S 1981 Appl. Phys. Lett. 38 207Google Scholar
[12] Beni G, Tenan M A 1981 J. Appl. Phys. 52 6011Google Scholar
[13] Lippman G 1875 Annales de Chimie et de Physique 5 494
[14] Berge B 1993 Comptes Rendus De Lacademie Des Sciences Paris Serie II 317 157
[15] Hayes R A, Feenstra B J 2003 Nature 425 383Google Scholar
[16] Chevalliot S, Heikenfeld J, Clapp L, Milarcik A, Vilner S 2011 J. Disp. Technol. 7 649Google Scholar
[17] Mugele F, Baret J C 2005 J. Phys. Condens. Matter 17 R705Google Scholar
[18] Grilli S, Miccio L, Vespini V, Finizio A, De Nicola S, Ferraro P 2008 Opt. Express 16 8084Google Scholar
[19] Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R 2010 Chem. Soc. Rev. 39 1153Google Scholar
[20] Sur A, Lu Y, Pascente C, Ruchhoeft P, Liu D 2018 Int. J. Heat Mass Transfer 120 202Google Scholar
[21] Krupenkin T, Taylor J A 2011 Nat. Commun. 2 448Google Scholar
[22] Lee J, Kim C J 2000 J. Microelectromech. Syst. 9 171Google Scholar
[23] Walker S, Shapiro B 2006 J. Microelectromech. Syst. 15 986Google Scholar
[24] Jones T 2005 J. Micromech. Microeng. 15 1184Google Scholar
[25] Digilov R 2000 Langmuir 16 6719Google Scholar
[26] Oh J M, Ko S H, Kang K H 2010 Phys. Fluids 22 032002Google Scholar
[27] Zeng J, Korsmeyer T 2004 Lab Chip 4 265Google Scholar
[28] Jones T B 2002 Langmuir 18 4437Google Scholar
[29] Kang K H 2002 Langmuir 18 10318Google Scholar
[30] Papathanasiou A G, Boudouvis A G 2005 Appl. Phys. Lett. 86 164102Google Scholar
[31] Mugele F 2009 Soft Matter 5 3377Google Scholar
[32] Bienia M, Mugele F, Quilliet C, Ballet P 2004 Physica A 339 72Google Scholar
[33] Verheijen H J J, Prins M W J 1999 Langmuir 15 6616Google Scholar
[34] Shapiro B, Moon H, Garrell R L, Kim C J 2003 J. Appl. Phys. 93 5794Google Scholar
[35] Song F, Ma B, Fan J, Chen Q, Li B Q 2019 Langmuir 35 9753Google Scholar
[36] Liu J, Wang M, Chen S, Robbins M O 2012 Phys. Rev. Lett. 108 216101Google Scholar
[37] Daub C D, Bratko D, Luzar A 2011 J. Phys. Chem. C 115 22393Google Scholar
[38] Łukaszewicz G, Kalita P 2016 Navier-Stokes Equations An Introduction with Applications (Cham, Switzerland: Springer
[39] Mohamad A A 2011 Lattice Boltzmann Method Fundamentals and Engineering Applications with Computer Codes (Heidelberg, Germany: Springer-Verlag
[40] 何雅玲, 王勇, 李庆 2009 格子Boltzmann方法的理论及应用(北京: 科学出版社)
He Y, Wang Y, Li Q 2009 Lattice Boltzmann Method Theory and Applications (Beijing: Science Press
[41] Guo Z, Shu C 2013 Lattice Boltzmann Method and its Applications in Engineering (Singapore: World Scientific
[42] Bray A J 1994 Adv. Phys. 43 357Google Scholar
[43] Cahn J W, Hillard J E 1958 J. Chem. Phys. 28 258Google Scholar
[44] Landau L D, Litshitz E M 1980 Statistical Physics Part 1 Course of Theoretical Physics (Oxford, United Kingdom: Butterworth-Heinemann
[45] Briant A J, Wagner A J, Yeomans J M 2004 Phys. Rev. E 69 031602
[46] Swift M R, Orlandini E, Osborn W R, Yeomans J M 1996 Phys. Rev. E 54 5041Google Scholar
[47] Fornberg B 1988 Math. Comput. 51 699Google Scholar
[48] 李庆扬 2008 数值分析(第5版)(北京: 清华大学出版社)
Li Q 2008 Numerical Analysis (5th Ed.) (Beijing: Tsinghua University Press
[49] Liu H, Kang Q, Leonardi C R, Schmieschek S, Narváez A, Jones B D, Williams J R, Valocchi A J, Harting J 2016 Comput. Geosci. 20 777Google Scholar
[50] Sharma K V, Straka R, Tavares F W 2019 Ind. Eng. Chem. Res. 58 16205Google Scholar
[51] Satofuka N, Nishioka T 1999 Comput. Mech. 23 164Google Scholar
[52] Wichmann K R K 2019 Ph. D. Dissertation (Munich, Germany: Technische Universität München
[53] Chen S, Doolen G D 1988 Annu. Rev. Fluid Mech. 30 329
[54] Qian Y H, D’Humières D, Lallemand P 1992 EPL 17 479Google Scholar
[55] Ruiz-Gutierrez E, Ledesma-Aguilar R 2019 Langmuir 35 4849Google Scholar
[56] Ren X, Wei S, Qu X, Liu F 2019 AIP Adv. 9 055021Google Scholar
[57] Liu H, Zhang Y 2015 J. Comput. Phys. 280 37Google Scholar
[58] Liu H H, Valocchi A J, Kang Q J 2012 Phys. Rev. E 85 046309Google Scholar
[59] Lee T, Liu L 2010 J. Comput. Phys. 229 8045Google Scholar
[60] Connington K, Lee T 2013 J. Comput. Phys. 250 601Google Scholar
[61] Fogolari F, Brigo A, Molinari H 2002 J. Mol. Recognit. 15 379
[62] Butt H, Graf L, Kappl M 2006 Physics and Chemistry of Interfaces (2nd Ed.) (Weinheim, Germany: Wiley-VCH
[63] Good R J 1992 J. Adhes. Sci. Technol. 6 1269Google Scholar
[64] Shi Z, Zhang Y, Liu M, Hanaor D A H, Gan Y 2018 Colloids Surf. , A 555 365Google Scholar
[65] Johnson R E 1993 Wettability (New York, United States: Marcel Dekker Inc.
[66] De Gennes P G 1994 Soft Interfaces (Cambridge, United Kingdom: Cambridge University Press
[67] Marmur A 2003 Langmuir 19 8343Google Scholar
[68] Chen X, Ma R, Li J, Hao C, Guo W, Luk B L, Li S C, Yao S, Wang Z 2012 Phys. Rev. Lett. 109 116101Google Scholar
[69] Marmur A 1992 Modern Approach to Wettability: Theory and Applications (New York, United States: Plenum Press
[70] 刘志浩 2022 硕士学位论文(广州: 华南师范大学)
Liu Z 2022 M. S. Thesis (Guangzhou: South China Normal University
[71] Zhou R, Ye Q, Li H, Jiang H, Tang B, Zhou G 2019 Results Phys. 12 1991Google Scholar
[72] Bard A, Faulkner L 2001 Electrochemical Methods Fundamentals and Applications (2nd Ed.) (Hoboken, United States: John Wiley & Sons Inc.
[73] 邓勇, 唐彪, 郭媛媛, 蒋洪伟, 周蕤, Hayes R A, 周国富 2016 华南师范大学学报(自然科学版) 48 31
Deng Y, Tang B, Guo Y, Jiang H, Zhou R, Hayes R A, Zhou G 2016 Journal of South China Normal University: Natural Sciences 48 31
[74] Deng Y, Li S, Ye D, Jiang H, Tang B, Zhou G 2020 Micromachines 11 81Google Scholar
[75] Yao Z, Zhang M, Wu H, Yang L, Li R, Wang P 2015 J. Am. Chem. Soc. 137 3799Google Scholar
[76] Li S, Ye D, Henzen A, Deng Y, Zhou G 2020 New J. Chem. 44 415Google Scholar
[77] Lee P T C, Chiu C W, Lee T M, Chang T Y, Wu M T, Cheng W Y, Kuo S W, Lin J J 2013 ACS Appl. Mater. Interfaces 5 5914Google Scholar
[78] Lee P T C, Chiu C W, Chang L Y, Chou P Y, Lee T M, Chang T Y, Wu M T, Cheng W Y, Kuo S W, Lin J J 2014 ACS Appl. Mater. Interfaces 6 14345Google Scholar
[79] Blankenbach K, Yan Q, O’Brien R J 2020 Handbook of Visual Display Technology (Cham, Switzerland: Springer
[80] Kuo S W, Chang Y P, Cheng W Y, Lo K L, Lee D W, Lee H H, Chen K T, Tsai Y H, Chen Y C, Chiu Y H, Chiu W W, Fuh S Y, Sun R L, Su P J, Wang C W, Lee K C, Shiu J W 2009 SID Int. Symp. Dig. Tech. Pap. 40 483Google Scholar
[81] Giraldo A, Aubert J, Bergeron N, Derckx E, Feenstra B J, Massard R, Mans J, Slack A, Vermeulen P 2010 J. Soc. Inf. Display 18 317Google Scholar
[82] You H, Steckl A J 2010 Appl. Phys. Lett. 97 023514Google Scholar
[83] 郭媛媛, 蒋洪伟, 袁冬, 唐彪, 周国富 2022 液晶与显示 37 925Google Scholar
Guo Y, Jiang H, Yuan D, Tang B, Zhou G 2022 Chin. J. Liq. Cryst. Disp. 37 925Google Scholar
[84] Ivanova N 2020 Philos. Trans. R. Soc. London, Ser. A 378 20190442
[85] Song X, Zhang H, Li D, Jia D, Liu T 2020 Sci. Rep. 10 16318Google Scholar
[86] Supekar O D, Zohrabi M, Gopinath J T, Bright V M 2017 Langmuir 33 4863Google Scholar
[87] Lee J K, Park K W, Kim H R, Kong S H 2011 Sens. Actuators, B 160 1593Google Scholar
[88] Hapsari A, Won Y H 2014 Aunual Conference on Oxide-based Materials and Devices V at SPIE Photonics West, San Francisco, CA, February 2–5, 2014 p89871S
[89] Xia Y, Chen J, Zhu Z, Zhang Q, Yang H, Wang Q 2018 RSC Adv. 8 4032Google Scholar
[90] Rosa P 2015 Ph. D. Dissertation (Lisbon, Portugal: New University of Lisbon
[91] Vandelli L, Padovani A, Larcher L, Southwick R G, Knowlton W B, Bersuker G 2011 IEEE Trans. Electron Devices 58 2878Google Scholar
[92] Jegert G, Kersch A, Weinreich W, Schörder U, Lugli P 2010 Appl. Phys. Lett. 96 062113Google Scholar
[93] Liu F, Liu Y Y, Li L, Zhou G, Jiang X, Luo J W 2020 Phys. Rev. Appl. 13 024020Google Scholar
[94] Zhou R, Fu S, Jiang H, Li X, Zhou G 2019 Results Phys. 15 102737Google Scholar
[95] Padovani A, Gao D Z, Shluger A L, Larcher L 2017 J. Appl. Phys. 121 155101Google Scholar
[96] Zhang Q, Yu L, Bian Z, Yuan D, Sun H, Tang B, Lu X, Liu F, Zhou G 2023 Phys. Rev. Appl. 19 024008Google Scholar
[97] Jones T B 2001 J. Electrostat. 51 290
[98] R-Gutiérrez É, Edwards A M J, McHale G, Newton M I, Wells G G, Brown C V, L-Aguilar R 2021 Langmuir 37 7328Google Scholar
[99] Dixit H N, Babu V 2006 Int. J. Heat Mass Transfer 49 727Google Scholar
[100] Ko S H, Lee S J, Kang K H, 2009 Appl. Phys. Lett. 94 194102Google Scholar
[101] Tang B, Groenewold J, Zhou M, Hayes R A, Zhou G 2016 Sci. Rep. 6 26593Google Scholar
[102] Tonks L 1936 Phys. Rev. 48 562
[103] Schaeffer E, Thurn-Albrecht T, Russell T P, Steiner U 2000 Nature 403 874Google Scholar
[104] González H, Surgy G N D, Chabrerie J P 1994 Phys. Rev. B 50 2520Google Scholar
[105] Yi Z, Shui L, Wang L, Jin M, Hayes R A, Zhou G 2015 Displays 37 86Google Scholar
[106] Luo Z J, Zhang W N, Liu L W, Xie S, Zhou G 2016 J. Soc. Inf. Disp. 24 345Google Scholar
-
图 1 主流显示器件类型及其工作原理 (a) LCD液晶显示, 对背光源透射光进行调制; (b) OLED有机发光显示, 利用电光转换实现自发光; (c) E-Paper电子纸显示, 对环境光的反射进行调制
Fig. 1. Working principles of mainstream display devices: (a) LCD (liquid crystal) display, based on modulation of backlight transmisssion; (b) OLED (organic light-emitting) display, based on self-emission by conversion from electricity to light; (c) E-Paper (electronic paper) display, based on modulation of reflective light from environment.
图 2 电泳电子纸显示原理. 微胶囊包裹的两色电异性颗粒体系, 通过施加电场的极性及强度控制颗粒运动, 实现白色(左)、灰色(中)、黑色(右)等灰阶显示
Fig. 2. Working principles of electrophoretic e-paper display. Microcapsules are composed of positively charged white pigment chips and negatively charged black pigment chips. Particle motion is controlled by polarity and strength of external electric fields, resulting in display of white (left), grey (middle), and black (right) colors.
图 3 电润湿电子纸显示原理. 像素单元内两相流体体系通过施加电场强度控制油水界面运动, 实现灰阶调控 (a) 未加电状态; (b) 加电状态
Fig. 3. Working principles of electrowetting e-paper display. Binary phase fluids composed of colored oil and transparent water are controlled by strength of external electric fields, resulting in color modulation: (a) Without electric bias; (b) with electric bias.
图 31 液体介电泳现象 (a) 介电液体朝向更强电场的方向运动[97]; (b) 介电液体中的气泡远离强电场方向运动[97]; (c) 液体的自由界面趋向与电场线平行[97]
Fig. 31. Liquid DEP phenomenology: (a) Dielectric liquid drawn into a strong electric field[97]; (b) bubble repelled from a strong electric field[97]; (c) controlled liquid profile with surface parallel to the applied electric field[97].
图 32 液体介电泳实验操控微流体向上运动, 直至介电泳力与重力相平衡. 图中介电性的油性液体在两个平行共面电极之间的缝隙中上升, 并且截面为与电场线相平行的半圆形状[97]
Fig. 32. Liquid DEP experiments with micro liquid moving upwards until DEP is balanced by gravity. Dielectric oil moves upwards within the slit between two parallel co-planar electrodes, with the cross section of the liquid in a semi-circle shape parallel to electric fields[97].
图 33 流体内部在自然对流情形下不同瑞利数Ra对应的等温线分布 (a)
$ Ra = {10^3} $ [99]; (b)$ Ra = {10^4} $ [99]; (c)$ Ra = $ $ {10^5} $ [99]; (d)$ Ra = {10^6} $ [99]Fig. 33. Isotherms for a fluid under natural convection, with different Rayleigh numbers: (a)
$ Ra = {10^3} $ [99]; (b)$ Ra = $ $ {10^4} $ [99]; (c)$ Ra = {10^5} $ [99]; (d)$ Ra = {10^6} $ [99].图 34 流体内部在自然对流情形下不同瑞利数对应的流线分布, 分别对应图33中的四种情况 (a)
$ Ra = {10^3} $ [99]; (b)$ Ra = {10^4} $ [99]; (c)$ Ra = {10^5} $ [99]; (d)$ Ra = {10^6} $ [99]Fig. 34. Streamlines for a fluid under natural convection, for the four cases in Fig. 33: (a)
$ Ra = {10^3} $ [99]; (b)$ Ra = $ $ {10^4} $ [99]; (c)$ Ra = {10^5} $ [99]; (d)$ Ra = {10^6} $ [99].图 36 温度梯度导致的液滴输运在亲疏水情形下表现出相反的运动方向 (a) 液滴中心位置与时间的关系[57]; (b) 亲疏水情况下的流场、温度场的分布[57]
Fig. 36. Droplet transport driven by temperature gradient, with opposite directions for hydrophilic and hydrophobic surfaces: (a) Droplet centroid position as a function of time[57]; (b) streamlines and isotherms for hydrophilic and hydrophobic cases[57].
表 1 流体中离子动力学物理模型概况
Table 1. Overview of modeling of ion dynamics in fluids.
理论 重要特征 前提假设 Helmholtz 表面电荷被单分子层的反离子中和;
表面电势在两层离子间线性变化离子热运动、离子扩散、离子表面吸附、
溶剂-固体表面相互作用均忽略Gouy-Chapman 考虑了离子热运动; 离子被假设为点电荷 离子实际尺寸被忽略; 固体表面电荷均匀分布;
非库仑相互作用被忽略Stern 考虑了离子的有限尺寸及水合离子作用;
考虑了离子在固体表面的吸附作用(即Stern层)Stern层厚度小于实际尺寸;
Stern层流速假设为0表 2 电润湿显示器件常用介电绝缘材料及其性能概况[87–89]
Table 2. Overview of common dielectric materials and their properties used in electrowetting display devices[87–89].
聚合物绝缘材料 介电材料 Parylene -C/N Teflon ®AF 1600 Teflon PTFE Cytop TM PDMS 聚氨酯 介电强度/(kV·mm–1) 268/276 21 60 110 21.2 22 介电常数 2.65/3.15 1.93 2.1 2.1 2.3—2.8 3.4 击穿电压/V ±240(DC)
<1 k(AC 50—20 kHz)— <300(DC)
<600 k(AC 1 kHz)<120(DC)
<800(AC 2 kHz)±500(DC) <400 (DC) 厚度/μm 3.5—30.0 0.01—0.10 25—50 0.1—1.0 38 6—35 接触角/(°) 126 120 114 110 120 50—80 加工工艺 气相沉积 旋涂/浸涂 成泡膜材料 旋涂 旋涂 旋涂 无机绝缘材料 介电材料 二氧化硅 氮化硅 BST 介电强度
/(kV·mm–1)400—600 500 18—54 介电常数 3.9 7.5 225—265 击穿电压/V VDC≥25 >40 VDC≥15 厚度/μm 0.1—1.0 0.15 0.07 接触角/(°) 46.7 30 40.8 加工工艺 PECVD 气相沉积 MOCVD -
[1] Lueder E, Knoll P, Lee S H 2022 Liquid Crystal Displays: Addressing Schemes and ElectroOptical Effects (3rd Ed.) (Hoboken, United States: John Wiley & Sons Ltd.
[2] Chen H W, Lee J H, Lin B Y, Chen S, Wu S T 2018 Light-Sci. Appl. 7 17168
[3] Tsujimura T 2017 OLED Displays Fundamentals and Applications (2nd Ed.) (Hoboken, United States: John Wiley & Sons Ltd.
[4] Shu Y, Lin X, Qin H, Hu Z, Jin Y, Peng X 2020 Angew. Chem. Int. Ed. 59 22312Google Scholar
[5] 周国富 2021 电子纸显示技术 (北京: 科学出版社)
Zhou G 2021 Electronic Paper Display Technology (Beijing: Science Press
[6] Yang B R 2022 E-Paper Displays (Hoboken, United States: John Wiley & Sons Ltd.
[7] Rogers J A 2001 Science 291 1502Google Scholar
[8] Shui L, Hayes R A, Jin M, Zhang X, Bai P, van den Berg A, Zhou G 2014 Lab Chip 14 2374Google Scholar
[9] Bhowmik A K, Li Z, Bos P J 2008 Mobile Displays: Technology and Applications (Hoboken, United States: John Wiley & Sons Ltd.
[10] Heikenfeld J, Drzaic P, Yeo J S, Koch T 2011 J. Soc. Inf. Display 19 129Google Scholar
[11] Beni G, Hackwood S 1981 Appl. Phys. Lett. 38 207Google Scholar
[12] Beni G, Tenan M A 1981 J. Appl. Phys. 52 6011Google Scholar
[13] Lippman G 1875 Annales de Chimie et de Physique 5 494
[14] Berge B 1993 Comptes Rendus De Lacademie Des Sciences Paris Serie II 317 157
[15] Hayes R A, Feenstra B J 2003 Nature 425 383Google Scholar
[16] Chevalliot S, Heikenfeld J, Clapp L, Milarcik A, Vilner S 2011 J. Disp. Technol. 7 649Google Scholar
[17] Mugele F, Baret J C 2005 J. Phys. Condens. Matter 17 R705Google Scholar
[18] Grilli S, Miccio L, Vespini V, Finizio A, De Nicola S, Ferraro P 2008 Opt. Express 16 8084Google Scholar
[19] Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R 2010 Chem. Soc. Rev. 39 1153Google Scholar
[20] Sur A, Lu Y, Pascente C, Ruchhoeft P, Liu D 2018 Int. J. Heat Mass Transfer 120 202Google Scholar
[21] Krupenkin T, Taylor J A 2011 Nat. Commun. 2 448Google Scholar
[22] Lee J, Kim C J 2000 J. Microelectromech. Syst. 9 171Google Scholar
[23] Walker S, Shapiro B 2006 J. Microelectromech. Syst. 15 986Google Scholar
[24] Jones T 2005 J. Micromech. Microeng. 15 1184Google Scholar
[25] Digilov R 2000 Langmuir 16 6719Google Scholar
[26] Oh J M, Ko S H, Kang K H 2010 Phys. Fluids 22 032002Google Scholar
[27] Zeng J, Korsmeyer T 2004 Lab Chip 4 265Google Scholar
[28] Jones T B 2002 Langmuir 18 4437Google Scholar
[29] Kang K H 2002 Langmuir 18 10318Google Scholar
[30] Papathanasiou A G, Boudouvis A G 2005 Appl. Phys. Lett. 86 164102Google Scholar
[31] Mugele F 2009 Soft Matter 5 3377Google Scholar
[32] Bienia M, Mugele F, Quilliet C, Ballet P 2004 Physica A 339 72Google Scholar
[33] Verheijen H J J, Prins M W J 1999 Langmuir 15 6616Google Scholar
[34] Shapiro B, Moon H, Garrell R L, Kim C J 2003 J. Appl. Phys. 93 5794Google Scholar
[35] Song F, Ma B, Fan J, Chen Q, Li B Q 2019 Langmuir 35 9753Google Scholar
[36] Liu J, Wang M, Chen S, Robbins M O 2012 Phys. Rev. Lett. 108 216101Google Scholar
[37] Daub C D, Bratko D, Luzar A 2011 J. Phys. Chem. C 115 22393Google Scholar
[38] Łukaszewicz G, Kalita P 2016 Navier-Stokes Equations An Introduction with Applications (Cham, Switzerland: Springer
[39] Mohamad A A 2011 Lattice Boltzmann Method Fundamentals and Engineering Applications with Computer Codes (Heidelberg, Germany: Springer-Verlag
[40] 何雅玲, 王勇, 李庆 2009 格子Boltzmann方法的理论及应用(北京: 科学出版社)
He Y, Wang Y, Li Q 2009 Lattice Boltzmann Method Theory and Applications (Beijing: Science Press
[41] Guo Z, Shu C 2013 Lattice Boltzmann Method and its Applications in Engineering (Singapore: World Scientific
[42] Bray A J 1994 Adv. Phys. 43 357Google Scholar
[43] Cahn J W, Hillard J E 1958 J. Chem. Phys. 28 258Google Scholar
[44] Landau L D, Litshitz E M 1980 Statistical Physics Part 1 Course of Theoretical Physics (Oxford, United Kingdom: Butterworth-Heinemann
[45] Briant A J, Wagner A J, Yeomans J M 2004 Phys. Rev. E 69 031602
[46] Swift M R, Orlandini E, Osborn W R, Yeomans J M 1996 Phys. Rev. E 54 5041Google Scholar
[47] Fornberg B 1988 Math. Comput. 51 699Google Scholar
[48] 李庆扬 2008 数值分析(第5版)(北京: 清华大学出版社)
Li Q 2008 Numerical Analysis (5th Ed.) (Beijing: Tsinghua University Press
[49] Liu H, Kang Q, Leonardi C R, Schmieschek S, Narváez A, Jones B D, Williams J R, Valocchi A J, Harting J 2016 Comput. Geosci. 20 777Google Scholar
[50] Sharma K V, Straka R, Tavares F W 2019 Ind. Eng. Chem. Res. 58 16205Google Scholar
[51] Satofuka N, Nishioka T 1999 Comput. Mech. 23 164Google Scholar
[52] Wichmann K R K 2019 Ph. D. Dissertation (Munich, Germany: Technische Universität München
[53] Chen S, Doolen G D 1988 Annu. Rev. Fluid Mech. 30 329
[54] Qian Y H, D’Humières D, Lallemand P 1992 EPL 17 479Google Scholar
[55] Ruiz-Gutierrez E, Ledesma-Aguilar R 2019 Langmuir 35 4849Google Scholar
[56] Ren X, Wei S, Qu X, Liu F 2019 AIP Adv. 9 055021Google Scholar
[57] Liu H, Zhang Y 2015 J. Comput. Phys. 280 37Google Scholar
[58] Liu H H, Valocchi A J, Kang Q J 2012 Phys. Rev. E 85 046309Google Scholar
[59] Lee T, Liu L 2010 J. Comput. Phys. 229 8045Google Scholar
[60] Connington K, Lee T 2013 J. Comput. Phys. 250 601Google Scholar
[61] Fogolari F, Brigo A, Molinari H 2002 J. Mol. Recognit. 15 379
[62] Butt H, Graf L, Kappl M 2006 Physics and Chemistry of Interfaces (2nd Ed.) (Weinheim, Germany: Wiley-VCH
[63] Good R J 1992 J. Adhes. Sci. Technol. 6 1269Google Scholar
[64] Shi Z, Zhang Y, Liu M, Hanaor D A H, Gan Y 2018 Colloids Surf. , A 555 365Google Scholar
[65] Johnson R E 1993 Wettability (New York, United States: Marcel Dekker Inc.
[66] De Gennes P G 1994 Soft Interfaces (Cambridge, United Kingdom: Cambridge University Press
[67] Marmur A 2003 Langmuir 19 8343Google Scholar
[68] Chen X, Ma R, Li J, Hao C, Guo W, Luk B L, Li S C, Yao S, Wang Z 2012 Phys. Rev. Lett. 109 116101Google Scholar
[69] Marmur A 1992 Modern Approach to Wettability: Theory and Applications (New York, United States: Plenum Press
[70] 刘志浩 2022 硕士学位论文(广州: 华南师范大学)
Liu Z 2022 M. S. Thesis (Guangzhou: South China Normal University
[71] Zhou R, Ye Q, Li H, Jiang H, Tang B, Zhou G 2019 Results Phys. 12 1991Google Scholar
[72] Bard A, Faulkner L 2001 Electrochemical Methods Fundamentals and Applications (2nd Ed.) (Hoboken, United States: John Wiley & Sons Inc.
[73] 邓勇, 唐彪, 郭媛媛, 蒋洪伟, 周蕤, Hayes R A, 周国富 2016 华南师范大学学报(自然科学版) 48 31
Deng Y, Tang B, Guo Y, Jiang H, Zhou R, Hayes R A, Zhou G 2016 Journal of South China Normal University: Natural Sciences 48 31
[74] Deng Y, Li S, Ye D, Jiang H, Tang B, Zhou G 2020 Micromachines 11 81Google Scholar
[75] Yao Z, Zhang M, Wu H, Yang L, Li R, Wang P 2015 J. Am. Chem. Soc. 137 3799Google Scholar
[76] Li S, Ye D, Henzen A, Deng Y, Zhou G 2020 New J. Chem. 44 415Google Scholar
[77] Lee P T C, Chiu C W, Lee T M, Chang T Y, Wu M T, Cheng W Y, Kuo S W, Lin J J 2013 ACS Appl. Mater. Interfaces 5 5914Google Scholar
[78] Lee P T C, Chiu C W, Chang L Y, Chou P Y, Lee T M, Chang T Y, Wu M T, Cheng W Y, Kuo S W, Lin J J 2014 ACS Appl. Mater. Interfaces 6 14345Google Scholar
[79] Blankenbach K, Yan Q, O’Brien R J 2020 Handbook of Visual Display Technology (Cham, Switzerland: Springer
[80] Kuo S W, Chang Y P, Cheng W Y, Lo K L, Lee D W, Lee H H, Chen K T, Tsai Y H, Chen Y C, Chiu Y H, Chiu W W, Fuh S Y, Sun R L, Su P J, Wang C W, Lee K C, Shiu J W 2009 SID Int. Symp. Dig. Tech. Pap. 40 483Google Scholar
[81] Giraldo A, Aubert J, Bergeron N, Derckx E, Feenstra B J, Massard R, Mans J, Slack A, Vermeulen P 2010 J. Soc. Inf. Display 18 317Google Scholar
[82] You H, Steckl A J 2010 Appl. Phys. Lett. 97 023514Google Scholar
[83] 郭媛媛, 蒋洪伟, 袁冬, 唐彪, 周国富 2022 液晶与显示 37 925Google Scholar
Guo Y, Jiang H, Yuan D, Tang B, Zhou G 2022 Chin. J. Liq. Cryst. Disp. 37 925Google Scholar
[84] Ivanova N 2020 Philos. Trans. R. Soc. London, Ser. A 378 20190442
[85] Song X, Zhang H, Li D, Jia D, Liu T 2020 Sci. Rep. 10 16318Google Scholar
[86] Supekar O D, Zohrabi M, Gopinath J T, Bright V M 2017 Langmuir 33 4863Google Scholar
[87] Lee J K, Park K W, Kim H R, Kong S H 2011 Sens. Actuators, B 160 1593Google Scholar
[88] Hapsari A, Won Y H 2014 Aunual Conference on Oxide-based Materials and Devices V at SPIE Photonics West, San Francisco, CA, February 2–5, 2014 p89871S
[89] Xia Y, Chen J, Zhu Z, Zhang Q, Yang H, Wang Q 2018 RSC Adv. 8 4032Google Scholar
[90] Rosa P 2015 Ph. D. Dissertation (Lisbon, Portugal: New University of Lisbon
[91] Vandelli L, Padovani A, Larcher L, Southwick R G, Knowlton W B, Bersuker G 2011 IEEE Trans. Electron Devices 58 2878Google Scholar
[92] Jegert G, Kersch A, Weinreich W, Schörder U, Lugli P 2010 Appl. Phys. Lett. 96 062113Google Scholar
[93] Liu F, Liu Y Y, Li L, Zhou G, Jiang X, Luo J W 2020 Phys. Rev. Appl. 13 024020Google Scholar
[94] Zhou R, Fu S, Jiang H, Li X, Zhou G 2019 Results Phys. 15 102737Google Scholar
[95] Padovani A, Gao D Z, Shluger A L, Larcher L 2017 J. Appl. Phys. 121 155101Google Scholar
[96] Zhang Q, Yu L, Bian Z, Yuan D, Sun H, Tang B, Lu X, Liu F, Zhou G 2023 Phys. Rev. Appl. 19 024008Google Scholar
[97] Jones T B 2001 J. Electrostat. 51 290
[98] R-Gutiérrez É, Edwards A M J, McHale G, Newton M I, Wells G G, Brown C V, L-Aguilar R 2021 Langmuir 37 7328Google Scholar
[99] Dixit H N, Babu V 2006 Int. J. Heat Mass Transfer 49 727Google Scholar
[100] Ko S H, Lee S J, Kang K H, 2009 Appl. Phys. Lett. 94 194102Google Scholar
[101] Tang B, Groenewold J, Zhou M, Hayes R A, Zhou G 2016 Sci. Rep. 6 26593Google Scholar
[102] Tonks L 1936 Phys. Rev. 48 562
[103] Schaeffer E, Thurn-Albrecht T, Russell T P, Steiner U 2000 Nature 403 874Google Scholar
[104] González H, Surgy G N D, Chabrerie J P 1994 Phys. Rev. B 50 2520Google Scholar
[105] Yi Z, Shui L, Wang L, Jin M, Hayes R A, Zhou G 2015 Displays 37 86Google Scholar
[106] Luo Z J, Zhang W N, Liu L W, Xie S, Zhou G 2016 J. Soc. Inf. Disp. 24 345Google Scholar
计量
- 文章访问数: 6462
- PDF下载量: 168
- 被引次数: 0