搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拓扑材料中的平面霍尔效应

巴佳燕 陈复洋 段后建 邓明勋 王瑞强

引用本文:
Citation:

拓扑材料中的平面霍尔效应

巴佳燕, 陈复洋, 段后建, 邓明勋, 王瑞强

Planar Hall effect in topological materials

Ba Jia-Yan, Chen Fu-Yang, Duan Hou-Jian, Deng Ming-Xun, Wang Rui-Qiang
PDF
HTML
导出引用
  • 平面霍尔效应(planar Hall effect, PHE)是当前凝聚态输运中研究的热点之一. 近年来, 平面霍尔效应, 尤其是拓扑材料中的平面霍尔效应, 引起了人们的广泛关注和研究, 并取得了很大的进展. 不同于普通霍尔效应, 平面霍尔效应中的横向电流、磁场和电场可以出现在同一平面, 无法用洛伦兹力解释, 其很大程度上依赖于磁电阻的各向异性. 本文从理论和实验两个角度介绍拓扑材料中平面霍尔效应的研究进展, 深入分析了导致线性和非线性平面霍尔效应的各种外禀和内禀机制, 并讨论尚待解决的相关问题和未来的发展方向.
    The planar Hall effect (PHE) is one of the hot topics in the field of condensed matter physics. In recent years, the PHE has received great attention especially in topological materials such as topological insulators and topological semimetals, and great progress has been made. Unlike the scenario in ordinary Hall effect, the transverse current, magnetic field, and electric field in the PHE can appear in the same plane and cannot be explained by the Lorentz force, which largely depends on the anisotropy of the magnetoresistivity. With the development of nonlinear effect in topological material, the PHE has been extended to a nonlinear regime, which has also been extensively studied experimentally. To explain the linear and nonlinear PHEs observed experimentally, various microscopic mechanisms have been proposed theoretically. In this paper, the research progress of the linear and nonlinear PHEs of topological materials is introduced theoretically and experimentally, and various extrinsic and intrinsic mechanisms leading to the linear and nonlinear PHEs are analyzed in depth. The physical mechanisms of the linear PHE mainly include the tilt of Dirac cone, magnon scattering, chiral anomaly (or chiral-anomaly-like), shift effect, and Berry curvature, whereas ones of the nonlinear PHE mainly include the nonlinear Drude term, shift effect, Berry curvature dipole, magnon scattering, chiral anomaly, and Berry-connection polarizability. In addition, the relevant problems to be solved and the future development directions are also proposed.
      通信作者: 王瑞强, wangruiqiang@m.scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874016, 12274146, 12174121, 12104167)和广东省自然科学基金(批准号: 2021A1515010369)资助的课题.
      Corresponding author: Wang Rui-Qiang, wangruiqiang@m.scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874016, 12274146, 12174121, 12104167) and the Natural Science Foundation of Guangdong Province (Grant Nos. 2021A1515010369).
    [1]

    Hall E H 1879 Am. J. Math. 2 287Google Scholar

    [2]

    Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539Google Scholar

    [3]

    Hall E H 1880 Philos. Mag. 10 301Google Scholar

    [4]

    Karplus R, Luttinger J M 1954 Phys. Rev. 95 1154Google Scholar

    [5]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [6]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [7]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [8]

    Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [9]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [10]

    Wang C M, Sun H P, Lu H Z, Xie X C 2017 Phys. Rev. Lett. 119 136806Google Scholar

    [11]

    Zhang C, Zhang Y, Yuan X, Lu S, Zhang J, Narayan A, Liu Y, Zhang H, Ni Z, Liu R, Choi E S, Suslov A, Sanvito S, Pi L, Lu H Z, Potter A C, Xiu F 2019 Nature 565 331Google Scholar

    [12]

    Tang H X, Kawakami R K, Awschalom D D, Roukes M L 2003 Phys. Rev. Lett. 90 107201Google Scholar

    [13]

    Seemann K M, Freimuth F, Zhang H, Blügel S, Mokrousov Y, Bürgler D E, Schneider C M 2011 Phys. Rev. Lett. 107 086603Google Scholar

    [14]

    Bowen M, Friedland K J, Herfort J, Schönherr H P, Ploog K H 2005 Phys. Rev. B 71 172401Google Scholar

    [15]

    He P, Zhang S S L, Zhu D, Shi S, Heinonen O G, Vignale G, Yang H 2019 Phys. Rev. Lett. 123 016801Google Scholar

    [16]

    Weng Z J, Ba J Y, Ke Y H, Duan H J, Deng M X, Wang R Q 2022 Phys. Rev. B 106 195134Google Scholar

    [17]

    Wei Y W, Feng J, Weng H 2023 Phys. Rev. B 107 075131Google Scholar

    [18]

    Huang Y X, Feng X, Wang H, Xiao C, Yang S A 2023 Phys. Rev. Lett. 130 126303Google Scholar

    [19]

    Berry M V 1984 Proc. R. Soc. London A 392 45Google Scholar

    [20]

    Pugh E M, Rostoker N 1953 Rev. Mod. Phys. 25 151Google Scholar

    [21]

    Berger L 1970 Phys. Rev. B 2 4559Google Scholar

    [22]

    Miyasato T, Abe N, Fujii T, Asamitsu A, Onoda S, Onose Y, Nagaosa N, Tokura Y 2007 Phys. Rev. Lett. 99 086602Google Scholar

    [23]

    Deng M X, Luo W, Wang R Q, Sheng L, Xing D Y 2017 Phys. Rev. B 96 155141Google Scholar

    [24]

    Jungwirth T, Sinova J, Mašek J, Kučera J, MacDonald A H 2006 Rev. Mod. Phys. 78 809Google Scholar

    [25]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [26]

    Ge Z, Lim W L, Shen S, Zhou Y Y, Liu X, Furdyna J K, Dobrowolska M 2007 Phys. Rev. B 75 014407Google Scholar

    [27]

    Yin G, Yu J X, Liu Y, Lake R K, Zang J, Wang K L 2019 Phys. Rev. Lett. 122 106602Google Scholar

    [28]

    Wadehra N, Tomar R, Varma R M, Gopal R K, Singh Y, Dattagupta S, Chakraverty S 2020 Nat. Commun. 11 874Google Scholar

    [29]

    Joshua A, Ruhman J, Pecker S, Altman E, Ilani S 2013 Proc. Natl. Acad. Sci. USA 110 9633Google Scholar

    [30]

    Taskin A A, Legg H F, Yang F, Sasaki S, Kanai Y, Matsumoto K, Rosch A, Ando Y 2017 Nat. Commun. 8 1340Google Scholar

    [31]

    Nandy S, Sharma G, Taraphder A, Tewari S 2017 Phys. Rev. Lett. 119 176804Google Scholar

    [32]

    Deng M X, Duan H J, Luo W, Deng W Y, Wang R Q, Sheng L 2019 Phys. Rev. B 99 165146Google Scholar

    [33]

    Deng M X, Qi G Y, Ma R, Shen R, Wang R Q, Sheng L, Xing D Y 2019 Phys. Rev. Lett. 122 036601Google Scholar

    [34]

    Deng M X, Ba J Y, Ma R, Luo W, Wang R Q, Sheng L, Xing D Y 2020 Phys. Rev. Research 2 033346Google Scholar

    [35]

    Li X S, Wang C, Deng M X, Duan H J, Fu P H, Wang R Q, Sheng L, Xing D Y 2019 Phys. Rev. Lett. 123 206601Google Scholar

    [36]

    Chen J N, Yang Y Y, Zhou Y L, Wu Y J, Duan H J, Deng M X, Wang R Q 2022 Phys. Rev. B 105 085124Google Scholar

    [37]

    Sulaev A, Zeng M, Shen S Q, Cho S K, Zhu W G, Feng Y P, Eremeev S V, Kawazoe Y, Shen L, Wang L 2015 Nano Lett. 15 2061Google Scholar

    [38]

    Liu Q, Fei F, Chen B, Bo X, Wei B, Zhang S, Zhang M, Xie F, Naveed M, Wan X, Song F, Wang B 2019 Phys. Rev. B 99 155119Google Scholar

    [39]

    Wang Y, Lee P A, Silevitch D M, Gomez F, Cooper S E, Ren Y, Yan J Q, Mandrus D, Rosenbaum T F, Feng Y 2020 Nat. Commun. 11 216Google Scholar

    [40]

    Wu B, Pan X C, Wu W, Fei F, Chen B, Liu Q, Bu H, Cao L, Song F, Wang B 2018 Appl. Phys. Lett. 113 011902Google Scholar

    [41]

    Zheng S H, Duan H J, Wang J K, Li J Y, Deng M X, Wang R Q 2020 Phys. Rev. B 101 041408Google Scholar

    [42]

    Shan W Y, Lu H Z, Shen S Q 2010 New J. Phys. 12 043048Google Scholar

    [43]

    Rakhmilevich D, Wang F, Zhao W, Chan M H W, Moodera J S, Liu C, Chang C Z 2018 Phys. Rev. B 98 094404Google Scholar

    [44]

    Onose Y, Ideue T, Katsura H, Shiomi Y, Nagaosa N, Tokura Y 2010 Science 329 297Google Scholar

    [45]

    Fu L 2009 Phys. Rev. Lett. 103 266801Google Scholar

    [46]

    Nomura M, Souma S, Takayama A, Sato T, Takahashi T, Eto K, Segawa K, Ando Y 2014 Phys. Rev. B 89 045134Google Scholar

    [47]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [48]

    Hasan M Z, Xu S Y, Belopolski I, Huang S M 2017 Annu. Rev. Condens. Matter Phys. 8 289Google Scholar

    [49]

    Yan B, Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337Google Scholar

    [50]

    Das K, Agarwal A 2019 Phys. Rev. B 99 085405Google Scholar

    [51]

    Ma D, Jiang H, Liu H, Xie X C 2019 Phys. Rev. B 99 115121Google Scholar

    [52]

    Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S, Pan J W 2021 Science 372 271Google Scholar

    [53]

    Yuan X, Zhang C, Zhang Y, Yan Z, Lyu T, Zhang M, Li Z, Song C, Zhao M, Leng P, Ozerov M, Chen X, Wang N, Shi Y, Yan H, Xiu F 2020 Nat. Commun. 11 1259Google Scholar

    [54]

    Puphal P, Pomjakushin V, Kanazawa N, Ukleev V, Gawryluk D J, Ma J, Naamneh M, Plumb N C, Keller L, Cubitt R, Pomjakushina E, White J S 2020 Phys. Rev. Lett. 124 017202Google Scholar

    [55]

    Nielsen H B, Ninomiya M 1983 Phys. Lett. B 130 389Google Scholar

    [56]

    Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Wang B, Alidoust N, Bian G, Neupane M, Zhang C, Jia S, Bansil A, Lin H, Hasan M Z 2015 Nat. Commun. 6 7373Google Scholar

    [57]

    Weng H, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029Google Scholar

    [58]

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jia S, Hasan M Z 2015 Science 349 613Google Scholar

    [59]

    Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M, Ding H 2015 Nat. Phys. 11 724Google Scholar

    [60]

    Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J, Ong N P 2015 Science 350 413Google Scholar

    [61]

    Li C Z, Wang L X, Liu H, Wang J, Liao Z M, Yu D P 2015 Nat. Commun. 6 10137Google Scholar

    [62]

    Lv Y Y, Li X, Zhang B B, Deng W Y, Yao S H, Chen Y B, Zhou J, Zhang S T, Lu M H, Zhang L, Tian M, Sheng L, Chen Y F 2017 Phys. Rev. Lett. 118 096603Google Scholar

    [63]

    Goswami P, Tewari S 2013 Phys. Rev. B 88 245107Google Scholar

    [64]

    Rylands C, Parhizkar A, Burkov A A, Galitski V 2021 Phys. Rev. Lett. 126 185303Google Scholar

    [65]

    Burkov A 2015 Science 350 378Google Scholar

    [66]

    Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P, Cava R J 2014 Nature 514 205Google Scholar

    [67]

    Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z, Chen Y, Schnelle W, Borrmann H, Grin Y, Felser C, Yan B 2015 Nat. Phys. 11 645Google Scholar

    [68]

    Chen L, Chang K 2020 Phys. Rev. Lett. 125 047402Google Scholar

    [69]

    Ong N P, Liang S 2021 Nat. Rev. Phys. 3 394Google Scholar

    [70]

    Lei Y H, Zhou Y L, Duan H J, Deng M X, Lu Z E, Wang R Q 2021 Phys. Rev. B 104 L121117Google Scholar

    [71]

    Ghosh S, Sinha D, Nandy S, Taraphder A 2020 Phys. Rev. B 102 121105Google Scholar

    [72]

    Sipe J E, Shkrebtii A I 2000 Phys. Rev. B 61 5337Google Scholar

    [73]

    Sodemann I, Fu L 2015 Phys. Rev. Lett. 115 216806Google Scholar

    [74]

    Kang K, Li T, Sohn E, Shan J, Mak K F 2019 Nat. Mater. 18 324Google Scholar

    [75]

    Xu S Y, Ma Q, Shen H, Fatemi V, Wu S, Chang T R, Chang G, Valdivia A M M, Chan C K, Gibson Q D, Zhou J, Liu Z, Watanabe K, Taniguchi T, Lin H, Cava R J, Fu L, Gedik N, Jarillo-Herrero P 2018 Nat. Phys. 14 900Google Scholar

    [76]

    Du Z Z, Wang C M, Lu H Z, Xie X C 2018 Phys. Rev. Lett. 121 266601Google Scholar

    [77]

    Du Z Z, Lu H Z, Xie X C 2021 Nat. Rev. Phys. 3 744Google Scholar

    [78]

    He P, Zhang S S L, Zhu D, Liu Y, Wang Y, Yu J, Vignale G, Yang H 2018 Nat. Phys. 14 495Google Scholar

    [79]

    Rao W, Zhou Y L, Wu Y j, Duan H J, Deng M X, Wang R Q 2021 Phys. Rev. B 103 155415Google Scholar

    [80]

    Dyrda A, Barnaś J, Fert A 2020 Phys. Rev. Lett. 124 046802Google Scholar

    [81]

    Zarezad A N, Barnaś J, Qaiumzadeh A, Dyrda A 2023 Phys. Status Solidi RRL 2200483Google Scholar

    [82]

    Yasuda K, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M, Tokura Y 2016 Phys. Rev. Lett. 117 127202Google Scholar

    [83]

    Yasuda K, Tsukazaki A, Yoshimi R, Kondou K, Takahashi K S, Otani Y, Kawasaki M, Tokura Y 2017 Phys. Rev. Lett. 119 137204Google Scholar

    [84]

    Zyuzin A A, Hook M D, Burkov A A 2011 Phys. Rev. B 83 245428Google Scholar

    [85]

    Battilomo R, Scopigno N, Ortix C 2021 Phys. Rev. Research 3 L012006Google Scholar

    [86]

    Kheirabadi N, Langari A 2022 Phys. Rev. B 106 245143Google Scholar

    [87]

    Nandy S, Sodemann I 2019 Phys. Rev. B 100 195117Google Scholar

    [88]

    Gao Y, Yang S A, Niu Q 2014 Phys. Rev. Lett. 112 166601Google Scholar

    [89]

    Wang C, Gao Y, Xiao D 2021 Phys. Rev. Lett. 127 277201Google Scholar

    [90]

    Liu H, Zhao J, Huang Y X, Wu W, Sheng X L, Xiao C, Yang S A 2021 Phys. Rev. Lett. 127 277202Google Scholar

    [91]

    Liu H, Zhao J, Huang Y X, Feng X, Xiao C, Wu W, Lai S, Gao W B, Yang S A 2022 Phys. Rev. B 105 045118Google Scholar

    [92]

    Kumar N, Guin S N, Felser C, Shekhar C 2018 Phys. Rev. B 98 041103Google Scholar

    [93]

    Singha R, Roy S, Pariari A, Satpati B, Mandal P 2018 Phys. Rev. B 98 081103Google Scholar

    [94]

    Huang D, Nakamura H, Takagi H 2021 Phys. Rev. Research 3 013268Google Scholar

    [95]

    Wu M, Tu D, Nie Y, Miao S, Gao W, Han Y, Zhu X, Zhou J, Ning W, Tian M 2022 Nano Lett. 22 73Google Scholar

    [96]

    Kozuka Y, Isogami S, Masuda K, Miura Y, Das S, Fujioka J, Ohkubo T, Kasai S 2021 Phys. Rev. Lett. 126 236801Google Scholar

    [97]

    Lao B, Liu P, Zheng X, Lu Z, et al. 2022 Phys. Rev. B 106 L220409Google Scholar

    [98]

    Li L, Wu Y, Liu X, Liu J, Ruan H, Zhi Z, Zhang Y, Huang P, Ji Y, Tang C, Yang Y, Che R, Kou X 2023 Adv. Mater. 35 2207322Google Scholar

    [99]

    Wang Y, Mambakkam S V, Huang Y X, Wang Y, Ji Y, Xiao C, Yang S A, Law S A, Xiao J Q 2022 Phys. Rev. B 106 155408Google Scholar

    [100]

    Li L, Cao J, Cui C, Yu Z M, Yao Y 2023 Phys. Rev. B 108 085120Google Scholar

  • 图 1  (a)$ {\rm{Bi}}_{2-x}{\rm{Sb}}_{x}{\rm{Te}}_{3} $的薄膜双门霍尔棒控器件简图; (b)自旋极化杂质背散射以及背散射锁定的示意图; (c)磁场下PHE和纵向磁电阻振幅随着角度的变化; (d)磁场下的PHE振幅(左轴)以及有效总载流子密度(右轴)关于门电压的依赖性[30]

    Fig. 1.  (a) A sketch of the $ {\rm{Bi}}_{2-x}{\rm{Sb}}_{x}{\rm{Te}}_{3} $ dual-gate Hall-bar device and the measurement configuration; (b) schematic diagram of spin-polarized impurity backscattering and backscattering locking; (c) PHE and longitudinal magnetoresistance variation with angle at magnetic field; (d) dependence of PHE amplitude (left axis) and effective total carrier density (right axis) about gate voltage under magnetic field. Image cited from Ref.[30]

    图 2  (a)和(b)展现了包含动量平方项的狄拉克锥在平面磁场下发生倾斜; (c)和(d) 展示了加入面内磁场后造成的背散射锁定的解除, 从而导致各向异性的纵向磁电阻率[41]

    Fig. 2.  (a) and (b) exhibit the Dirac cone containing the momentum squared term tilted under a planar magnetic field; in (c) and (d) the unlocking of the backscattering caused by the addition of an in-plane magnetic field is shown, resulting in an anisotropic longitudinal magnetoresistivity. Image cited from Ref.[41]

    图 3  (a)平面霍尔电阻(planar Hall resistivity, PHR)和(b)各向异性磁电阻(anisotropic magnetoresistivity, AMR)随着磁场与电场的角度$ \theta_{\rm{B}} $振荡; (c) 在不同化学势下, PHR和AMR的振幅与杂质势U的关系; (d) PHR和AMR的振幅与化学势μ的关系(其中$ U=50 $)[41]

    Fig. 3.  (a) Planar Hall resistivity (PHR) and (b) anisotropic magnetoresistivity (AMR) oscillate with the angle $ \theta_{\rm{B}} $ of the magnetic and electric fields; (c) amplitudes of PHR and AMR versus impurity potential U at different chemical potentials; (d) amplitudes of PHR and AMR versus chemical potential μ where U = 50. Image cited from Ref.[41]

    图 4  平面霍尔电阻(planar Hall resistivity, PHR)随化学势的演化图 (a)不同杂质势取值对双峰的影响; (b)不同磁场强度对双峰的影响. 插入图展示了PHR振幅随磁场强度B的变化, 当B较小时呈二次方关系, 较大时呈线性关系[41]

    Fig. 4.  Evolution of the double-peak structure in planar Hall resistivity (PHR) amplitude $ \Delta \rho _{xy} $ with (a) Effect of different U values on double-peaks, and (b) effect of different magnetic field strength on double-peaks. The inset of (b) shows the $ \Delta \rho _{xy} $ as a function of the magnetic field strength B. Image cited from Ref.[41]

    图 5  (a)铁磁绝缘体/拓扑绝缘体双层异质结构装置以及所选坐标系示意图, 其中$ \theta_{{\rm{B}}} $为外磁场与x 轴的夹角. 这里假设铁磁体被完全磁化(SB 平行). (b)各向同性费米表面上的磁振子散射示意图[16]

    Fig. 5.  (a) Schematic diagram of the ferromagnetic insulator/topological insulator bilayer heterostructure device and the chosen coordinate system, where $ \theta_{{\rm{B}}} $ is the angle between the external magnetic field and the x-axis. We assume that the ferromagnet is fully magnetized, which leads to $ {\boldsymbol{S}} // {\boldsymbol{B}} $. (b) Schematic of the magnon scattering for isotropic Fermi surface. Image cited from Ref.[16]

    图 6  (a)在磁场B存在下, 左手性和右手性费米子填充的能谱; (b) 存在额外平行于磁场B 的电场E时左手性和右手性费米子的能谱填充图[65]

    Fig. 6.  (a) Energy spectra of left-handed and right-handed fermions in the presence of a magnetic field B; (b) energy spectra of left-handed and right-handed fermions in the presence of an electric field E additionally parallel to the magnetic field B. Image cited from Ref.[65]

    图 7  (a)平面霍尔效应测量装置示意图; (b)平面霍尔电导率振幅随磁场强度B 的变化(其中插入图为纵向电导率); (c), (d)$ B=5\;{\rm{T}} $ 时纵向磁电导率和平面霍尔电导率随角度$ \theta $ 的变化[31]

    Fig. 7.  (a) Schematic diagram of the planar Hall effect measurement device; (b) amplitude of planar Hall conductivity as a function of magnetic field (the inset is the longitudinal conductivity); (c), (d) variation of longitudinal magnetoconductivity and planar Hall conductivity with angle $ \theta $ for $ B=5\;{\rm{T}} $. Image cited from Ref.[31]

    图 8  塞曼场不存在[(a), (c)]和存在[(b), (d)]时的Weyl锥和费米子填充, 第一行和第二行分别为$ {\boldsymbol{E}=0} $$ {\boldsymbol{E}\neq 0} $. 我们注意两个锥之间的手征化学势可以分别由(c)手征反常, 或是(d)倾斜效应产生[70]

    Fig. 8.  Weyl cone and fermion filling in the absence [(a), (c)] and presence [(b), (d)] of the Seeman field with $ {\boldsymbol{E}=0} $ and $ {\boldsymbol{E}\neq 0} $ in the first and second rows, respectively. We note that the chiral chemical potential between the two Weyl cones can be generated by (c) the chiral anomaly, or (d) the tilt effect, respectively. Image cited from Ref.[70]

    图 9  非线性平面霍尔效应和非线性磁电阻的测量示意图[15]

    Fig. 9.  Schematic illustration of the simultaneous measurements of nonlinear planar Hall effect and nonlinear magnetoresistance. Image cited from Ref.[15]

    图 10  (a)电场作用于三维拓扑绝缘体上, 横向产生电场E的二阶非线性自旋电流$ Q_{y}^{x} $; (b)外加磁场$ {\boldsymbol{B}} {/ /} {\boldsymbol{E}} $, 横向非线性自旋电流部分转换为电荷电流$ J_{y}({\boldsymbol{E}}^{2}) $, 产生非线性霍尔效应[15]

    Fig. 10.  (a) When an electric field E is applied to three dimensional (3D) topological insulators, a transverse nonlinear spin current $ Q_{y}^{x} $ at the second order of E is generated; (b) when an external magnetic field $ {\boldsymbol{B}} {/ /} {\boldsymbol{E}} $, the transverse nonlinear spin current is partially converted into a charge current $ J_{y}({\boldsymbol{E}}^{2}) $, giving rise to the nonlinear Hall effect. Image cited from Ref.[15]

    图 11  (a)平面磁场作用下的位移效应Dirac锥的变化示意图; (b)位移效应的自旋阀结构示意图; (c)磁场B相关的净自旋极化$ |{\boldsymbol{S}}| $[79]

    Fig. 11.  (a) Schematic illustration of Dirac cones of top and bottom surfaces in topological insulator thin films with shift effect induced by the in-plane magnetic field B; (b) schematic pictures of spin valve structure with shift effect; (c) the dependence of net spin polarization $ |{\boldsymbol{S}}| $ on the field strength B. Image cited from Ref.[79]

    图 12  (a) CBST/BST/InP样品的二次谐波横向电压$ V_{y}^{2\omega} $和二次谐波纵向电压$ V_{x}^{2\omega} $$ xy $平面上的角依赖性; (b)$ {\boldsymbol{J}} {/ /} {\boldsymbol{M}} $时的$ V_{y}^{2\omega} $的起源说明[83]

    Fig. 12.  (a) Angular dependence of second harmonic transverse (Hall) voltage $ V_{y}^{2\omega} $ and second harmonic longitudinal voltage $ V_{x}^{2\omega} $ in $ xy $ plane for the CBST/BST/InP sample; (b) illustration of the origin of $ V_{y}^{2\omega} $ under $ {\boldsymbol{J}} {/ /} {\boldsymbol{M}} $ configuration. Image cited from Ref.[83]

    表 1  拓扑材料中的线性和非线性平面霍尔效应的主要物理机制

    Table 1.  Main physics mechanisms of linear and nonlinear planar Hall effect in topological materials

    平面霍尔效应 物理机制 内外禀
    线性 狄拉克锥倾斜 外禀
    磁振子散射
    (类)手征反常
    位移效应
    贝里曲率 内禀
    非线性 非线性Drude项 外禀
    位移效应
    贝里偶极子
    磁振子散射
    手征反常
    贝里联络极化 内禀
    下载: 导出CSV
  • [1]

    Hall E H 1879 Am. J. Math. 2 287Google Scholar

    [2]

    Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539Google Scholar

    [3]

    Hall E H 1880 Philos. Mag. 10 301Google Scholar

    [4]

    Karplus R, Luttinger J M 1954 Phys. Rev. 95 1154Google Scholar

    [5]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [6]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [7]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [8]

    Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [9]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [10]

    Wang C M, Sun H P, Lu H Z, Xie X C 2017 Phys. Rev. Lett. 119 136806Google Scholar

    [11]

    Zhang C, Zhang Y, Yuan X, Lu S, Zhang J, Narayan A, Liu Y, Zhang H, Ni Z, Liu R, Choi E S, Suslov A, Sanvito S, Pi L, Lu H Z, Potter A C, Xiu F 2019 Nature 565 331Google Scholar

    [12]

    Tang H X, Kawakami R K, Awschalom D D, Roukes M L 2003 Phys. Rev. Lett. 90 107201Google Scholar

    [13]

    Seemann K M, Freimuth F, Zhang H, Blügel S, Mokrousov Y, Bürgler D E, Schneider C M 2011 Phys. Rev. Lett. 107 086603Google Scholar

    [14]

    Bowen M, Friedland K J, Herfort J, Schönherr H P, Ploog K H 2005 Phys. Rev. B 71 172401Google Scholar

    [15]

    He P, Zhang S S L, Zhu D, Shi S, Heinonen O G, Vignale G, Yang H 2019 Phys. Rev. Lett. 123 016801Google Scholar

    [16]

    Weng Z J, Ba J Y, Ke Y H, Duan H J, Deng M X, Wang R Q 2022 Phys. Rev. B 106 195134Google Scholar

    [17]

    Wei Y W, Feng J, Weng H 2023 Phys. Rev. B 107 075131Google Scholar

    [18]

    Huang Y X, Feng X, Wang H, Xiao C, Yang S A 2023 Phys. Rev. Lett. 130 126303Google Scholar

    [19]

    Berry M V 1984 Proc. R. Soc. London A 392 45Google Scholar

    [20]

    Pugh E M, Rostoker N 1953 Rev. Mod. Phys. 25 151Google Scholar

    [21]

    Berger L 1970 Phys. Rev. B 2 4559Google Scholar

    [22]

    Miyasato T, Abe N, Fujii T, Asamitsu A, Onoda S, Onose Y, Nagaosa N, Tokura Y 2007 Phys. Rev. Lett. 99 086602Google Scholar

    [23]

    Deng M X, Luo W, Wang R Q, Sheng L, Xing D Y 2017 Phys. Rev. B 96 155141Google Scholar

    [24]

    Jungwirth T, Sinova J, Mašek J, Kučera J, MacDonald A H 2006 Rev. Mod. Phys. 78 809Google Scholar

    [25]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [26]

    Ge Z, Lim W L, Shen S, Zhou Y Y, Liu X, Furdyna J K, Dobrowolska M 2007 Phys. Rev. B 75 014407Google Scholar

    [27]

    Yin G, Yu J X, Liu Y, Lake R K, Zang J, Wang K L 2019 Phys. Rev. Lett. 122 106602Google Scholar

    [28]

    Wadehra N, Tomar R, Varma R M, Gopal R K, Singh Y, Dattagupta S, Chakraverty S 2020 Nat. Commun. 11 874Google Scholar

    [29]

    Joshua A, Ruhman J, Pecker S, Altman E, Ilani S 2013 Proc. Natl. Acad. Sci. USA 110 9633Google Scholar

    [30]

    Taskin A A, Legg H F, Yang F, Sasaki S, Kanai Y, Matsumoto K, Rosch A, Ando Y 2017 Nat. Commun. 8 1340Google Scholar

    [31]

    Nandy S, Sharma G, Taraphder A, Tewari S 2017 Phys. Rev. Lett. 119 176804Google Scholar

    [32]

    Deng M X, Duan H J, Luo W, Deng W Y, Wang R Q, Sheng L 2019 Phys. Rev. B 99 165146Google Scholar

    [33]

    Deng M X, Qi G Y, Ma R, Shen R, Wang R Q, Sheng L, Xing D Y 2019 Phys. Rev. Lett. 122 036601Google Scholar

    [34]

    Deng M X, Ba J Y, Ma R, Luo W, Wang R Q, Sheng L, Xing D Y 2020 Phys. Rev. Research 2 033346Google Scholar

    [35]

    Li X S, Wang C, Deng M X, Duan H J, Fu P H, Wang R Q, Sheng L, Xing D Y 2019 Phys. Rev. Lett. 123 206601Google Scholar

    [36]

    Chen J N, Yang Y Y, Zhou Y L, Wu Y J, Duan H J, Deng M X, Wang R Q 2022 Phys. Rev. B 105 085124Google Scholar

    [37]

    Sulaev A, Zeng M, Shen S Q, Cho S K, Zhu W G, Feng Y P, Eremeev S V, Kawazoe Y, Shen L, Wang L 2015 Nano Lett. 15 2061Google Scholar

    [38]

    Liu Q, Fei F, Chen B, Bo X, Wei B, Zhang S, Zhang M, Xie F, Naveed M, Wan X, Song F, Wang B 2019 Phys. Rev. B 99 155119Google Scholar

    [39]

    Wang Y, Lee P A, Silevitch D M, Gomez F, Cooper S E, Ren Y, Yan J Q, Mandrus D, Rosenbaum T F, Feng Y 2020 Nat. Commun. 11 216Google Scholar

    [40]

    Wu B, Pan X C, Wu W, Fei F, Chen B, Liu Q, Bu H, Cao L, Song F, Wang B 2018 Appl. Phys. Lett. 113 011902Google Scholar

    [41]

    Zheng S H, Duan H J, Wang J K, Li J Y, Deng M X, Wang R Q 2020 Phys. Rev. B 101 041408Google Scholar

    [42]

    Shan W Y, Lu H Z, Shen S Q 2010 New J. Phys. 12 043048Google Scholar

    [43]

    Rakhmilevich D, Wang F, Zhao W, Chan M H W, Moodera J S, Liu C, Chang C Z 2018 Phys. Rev. B 98 094404Google Scholar

    [44]

    Onose Y, Ideue T, Katsura H, Shiomi Y, Nagaosa N, Tokura Y 2010 Science 329 297Google Scholar

    [45]

    Fu L 2009 Phys. Rev. Lett. 103 266801Google Scholar

    [46]

    Nomura M, Souma S, Takayama A, Sato T, Takahashi T, Eto K, Segawa K, Ando Y 2014 Phys. Rev. B 89 045134Google Scholar

    [47]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [48]

    Hasan M Z, Xu S Y, Belopolski I, Huang S M 2017 Annu. Rev. Condens. Matter Phys. 8 289Google Scholar

    [49]

    Yan B, Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337Google Scholar

    [50]

    Das K, Agarwal A 2019 Phys. Rev. B 99 085405Google Scholar

    [51]

    Ma D, Jiang H, Liu H, Xie X C 2019 Phys. Rev. B 99 115121Google Scholar

    [52]

    Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S, Pan J W 2021 Science 372 271Google Scholar

    [53]

    Yuan X, Zhang C, Zhang Y, Yan Z, Lyu T, Zhang M, Li Z, Song C, Zhao M, Leng P, Ozerov M, Chen X, Wang N, Shi Y, Yan H, Xiu F 2020 Nat. Commun. 11 1259Google Scholar

    [54]

    Puphal P, Pomjakushin V, Kanazawa N, Ukleev V, Gawryluk D J, Ma J, Naamneh M, Plumb N C, Keller L, Cubitt R, Pomjakushina E, White J S 2020 Phys. Rev. Lett. 124 017202Google Scholar

    [55]

    Nielsen H B, Ninomiya M 1983 Phys. Lett. B 130 389Google Scholar

    [56]

    Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Wang B, Alidoust N, Bian G, Neupane M, Zhang C, Jia S, Bansil A, Lin H, Hasan M Z 2015 Nat. Commun. 6 7373Google Scholar

    [57]

    Weng H, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029Google Scholar

    [58]

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jia S, Hasan M Z 2015 Science 349 613Google Scholar

    [59]

    Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M, Ding H 2015 Nat. Phys. 11 724Google Scholar

    [60]

    Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J, Ong N P 2015 Science 350 413Google Scholar

    [61]

    Li C Z, Wang L X, Liu H, Wang J, Liao Z M, Yu D P 2015 Nat. Commun. 6 10137Google Scholar

    [62]

    Lv Y Y, Li X, Zhang B B, Deng W Y, Yao S H, Chen Y B, Zhou J, Zhang S T, Lu M H, Zhang L, Tian M, Sheng L, Chen Y F 2017 Phys. Rev. Lett. 118 096603Google Scholar

    [63]

    Goswami P, Tewari S 2013 Phys. Rev. B 88 245107Google Scholar

    [64]

    Rylands C, Parhizkar A, Burkov A A, Galitski V 2021 Phys. Rev. Lett. 126 185303Google Scholar

    [65]

    Burkov A 2015 Science 350 378Google Scholar

    [66]

    Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P, Cava R J 2014 Nature 514 205Google Scholar

    [67]

    Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z, Chen Y, Schnelle W, Borrmann H, Grin Y, Felser C, Yan B 2015 Nat. Phys. 11 645Google Scholar

    [68]

    Chen L, Chang K 2020 Phys. Rev. Lett. 125 047402Google Scholar

    [69]

    Ong N P, Liang S 2021 Nat. Rev. Phys. 3 394Google Scholar

    [70]

    Lei Y H, Zhou Y L, Duan H J, Deng M X, Lu Z E, Wang R Q 2021 Phys. Rev. B 104 L121117Google Scholar

    [71]

    Ghosh S, Sinha D, Nandy S, Taraphder A 2020 Phys. Rev. B 102 121105Google Scholar

    [72]

    Sipe J E, Shkrebtii A I 2000 Phys. Rev. B 61 5337Google Scholar

    [73]

    Sodemann I, Fu L 2015 Phys. Rev. Lett. 115 216806Google Scholar

    [74]

    Kang K, Li T, Sohn E, Shan J, Mak K F 2019 Nat. Mater. 18 324Google Scholar

    [75]

    Xu S Y, Ma Q, Shen H, Fatemi V, Wu S, Chang T R, Chang G, Valdivia A M M, Chan C K, Gibson Q D, Zhou J, Liu Z, Watanabe K, Taniguchi T, Lin H, Cava R J, Fu L, Gedik N, Jarillo-Herrero P 2018 Nat. Phys. 14 900Google Scholar

    [76]

    Du Z Z, Wang C M, Lu H Z, Xie X C 2018 Phys. Rev. Lett. 121 266601Google Scholar

    [77]

    Du Z Z, Lu H Z, Xie X C 2021 Nat. Rev. Phys. 3 744Google Scholar

    [78]

    He P, Zhang S S L, Zhu D, Liu Y, Wang Y, Yu J, Vignale G, Yang H 2018 Nat. Phys. 14 495Google Scholar

    [79]

    Rao W, Zhou Y L, Wu Y j, Duan H J, Deng M X, Wang R Q 2021 Phys. Rev. B 103 155415Google Scholar

    [80]

    Dyrda A, Barnaś J, Fert A 2020 Phys. Rev. Lett. 124 046802Google Scholar

    [81]

    Zarezad A N, Barnaś J, Qaiumzadeh A, Dyrda A 2023 Phys. Status Solidi RRL 2200483Google Scholar

    [82]

    Yasuda K, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M, Tokura Y 2016 Phys. Rev. Lett. 117 127202Google Scholar

    [83]

    Yasuda K, Tsukazaki A, Yoshimi R, Kondou K, Takahashi K S, Otani Y, Kawasaki M, Tokura Y 2017 Phys. Rev. Lett. 119 137204Google Scholar

    [84]

    Zyuzin A A, Hook M D, Burkov A A 2011 Phys. Rev. B 83 245428Google Scholar

    [85]

    Battilomo R, Scopigno N, Ortix C 2021 Phys. Rev. Research 3 L012006Google Scholar

    [86]

    Kheirabadi N, Langari A 2022 Phys. Rev. B 106 245143Google Scholar

    [87]

    Nandy S, Sodemann I 2019 Phys. Rev. B 100 195117Google Scholar

    [88]

    Gao Y, Yang S A, Niu Q 2014 Phys. Rev. Lett. 112 166601Google Scholar

    [89]

    Wang C, Gao Y, Xiao D 2021 Phys. Rev. Lett. 127 277201Google Scholar

    [90]

    Liu H, Zhao J, Huang Y X, Wu W, Sheng X L, Xiao C, Yang S A 2021 Phys. Rev. Lett. 127 277202Google Scholar

    [91]

    Liu H, Zhao J, Huang Y X, Feng X, Xiao C, Wu W, Lai S, Gao W B, Yang S A 2022 Phys. Rev. B 105 045118Google Scholar

    [92]

    Kumar N, Guin S N, Felser C, Shekhar C 2018 Phys. Rev. B 98 041103Google Scholar

    [93]

    Singha R, Roy S, Pariari A, Satpati B, Mandal P 2018 Phys. Rev. B 98 081103Google Scholar

    [94]

    Huang D, Nakamura H, Takagi H 2021 Phys. Rev. Research 3 013268Google Scholar

    [95]

    Wu M, Tu D, Nie Y, Miao S, Gao W, Han Y, Zhu X, Zhou J, Ning W, Tian M 2022 Nano Lett. 22 73Google Scholar

    [96]

    Kozuka Y, Isogami S, Masuda K, Miura Y, Das S, Fujioka J, Ohkubo T, Kasai S 2021 Phys. Rev. Lett. 126 236801Google Scholar

    [97]

    Lao B, Liu P, Zheng X, Lu Z, et al. 2022 Phys. Rev. B 106 L220409Google Scholar

    [98]

    Li L, Wu Y, Liu X, Liu J, Ruan H, Zhi Z, Zhang Y, Huang P, Ji Y, Tang C, Yang Y, Che R, Kou X 2023 Adv. Mater. 35 2207322Google Scholar

    [99]

    Wang Y, Mambakkam S V, Huang Y X, Wang Y, Ji Y, Xiao C, Yang S A, Law S A, Xiao J Q 2022 Phys. Rev. B 106 155408Google Scholar

    [100]

    Li L, Cao J, Cui C, Yu Z M, Yao Y 2023 Phys. Rev. B 108 085120Google Scholar

  • [1] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件. 物理学报, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] 鲍昌华, 范本澍, 汤沛哲, 段文晖, 周树云. 量子材料的弗洛凯调控. 物理学报, 2023, 72(23): 234202. doi: 10.7498/aps.72.20231423
    [3] 王欢, 何春娟, 徐升, 王义炎, 曾祥雨, 林浚发, 王小艳, 巩静, 马小平, 韩坤, 王乙婷, 夏天龙. 拓扑半金属及磁性拓扑材料的单晶生长. 物理学报, 2023, 72(3): 038103. doi: 10.7498/aps.72.20221574
    [4] 熊枫, 彭志敏, 丁艳军, 杜艳君. NO紫外宽带吸收光谱的非线性响应及实验. 物理学报, 2022, 71(20): 203302. doi: 10.7498/aps.71.20220975
    [5] 邱子阳, 陈岩, 邱祥冈. 拓扑材料BaMnSb2的红外光谱学研究. 物理学报, 2022, 71(10): 107201. doi: 10.7498/aps.71.20220011
    [6] 李朝刚, 汪茂胜, 方泉, 彭雪城, 黄万霞. 表象变换和久期微扰理论在耦合杜芬方程中的应用. 物理学报, 2021, 70(2): 024601. doi: 10.7498/aps.70.20201057
    [7] 姜天舒, 肖孟, 张昭庆, 陈子亭. 周期与非周期传输线网络的物理与拓扑性质. 物理学报, 2020, 69(15): 150301. doi: 10.7498/aps.69.20200258
    [8] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导. 物理学报, 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [9] 王珊珊, 吴维康, 杨声远. 拓扑节线与节面金属的研究进展. 物理学报, 2019, 68(22): 227101. doi: 10.7498/aps.68.20191538
    [10] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究. 物理学报, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [11] 高广健, 邓明晰, 李明亮. 圆管结构中周向导波非线性效应的模式展开分析. 物理学报, 2015, 64(18): 184303. doi: 10.7498/aps.64.184303
    [12] 祝贤, 张心贲, 陈翔, 彭景刚, 戴能利, 李海清, 李进延. 在色散渐减光子晶体光纤中产生超连续谱的实验研究. 物理学报, 2013, 62(9): 094217. doi: 10.7498/aps.62.094217
    [13] 肖齐, 王珺, 郭霞生, 章东. 固体粗糙界面与超声的非线性相互作用研究. 物理学报, 2013, 62(9): 094301. doi: 10.7498/aps.62.094301
    [14] 陈伟, 孟洲, 周会娟, 罗洪. 远程干涉型光纤传感系统的非线性相位噪声分析. 物理学报, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [15] 吴洪, 王燕玲, 丁良恩. 双色场下紫外超短脉冲的频谱展宽. 物理学报, 2010, 59(6): 3973-3978. doi: 10.7498/aps.59.3973
    [16] 张丽平, 李海宁, 吴 洪, 李 贤, 丁良恩. Ar气中超连续谱产生的研究. 物理学报, 2008, 57(2): 904-908. doi: 10.7498/aps.57.904
    [17] 陈 亮, 梁昌洪, 党晓杰. 非线性左手材料中的二次谐波. 物理学报, 2007, 56(11): 6398-6402. doi: 10.7498/aps.56.6398
    [18] 祝 娅, 周 倩, 田 强. 非线性Kronig-Penney超晶格的二维实映射分析. 物理学报, 2005, 54(1): 343-347. doi: 10.7498/aps.54.343
    [19] 姜宏伟, 王艾玲, 郑 鹉. 自旋阀中的各向异性磁电阻效应. 物理学报, 2005, 54(5): 2338-2341. doi: 10.7498/aps.54.2338
    [20] 徐 权, 田 强. 一维分子链中激子与声子的相互作用和呼吸子解 . 物理学报, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
计量
  • 文章访问数:  3170
  • PDF下载量:  348
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-31
  • 修回日期:  2023-07-07
  • 上网日期:  2023-07-18
  • 刊出日期:  2023-10-20

/

返回文章
返回