搜索

x
中国物理学会期刊

非简并双光子吸收及其应用研究进展

CSTR: 32037.14.aps.72.20230911

Research advances in nondegenerate two-photonabsorption and its applications

CSTR: 32037.14.aps.72.20230911
PDF
HTML
导出引用
  • 非简并双光子吸收是两个能量不同的光子同时被介质吸收, 产生一次电子从基态经过一个中间虚态向激发态跃迁的非线性光学效应. 非简并双光子吸收与简并双光子吸收相比, 由于中间态共振效应, 吸收系数得到了几十倍甚至几百倍的增大, 因此在多个非线性光学应用中具有极大的潜力. 本文首先介绍双光子吸收的基本原理, 解释了非简并双光子吸收的增强机制; 然后详细介绍双光子吸收的基本测量方法; 接着综述三维半导体材料、有机荧光分子、二维材料与量子点的非简并双光子吸收相关研究; 最后重点总结了其在红外探测与成像、双光子荧光显微成像、全光开关与光调制等领域的应用进展, 并对领域领域的未来发展进行了展望.

     

    Nondegenerate two-photon absorption is a nonlinear optical effect in which two photons with different energy are absorbed by a medium simultaneously, resulting in a single electron transition from ground state to excited state through an intermediate virtual state. Compared with the degenerate two-photon absorption coefficient, the absorption coefficient of nondegenerate two-photon absorption is increased by tens or even hundreds of times due to the intermediate resonance effect, so it has great potentials in many nonlinear optical applications. Firstly, the basic principle of two-photon absorption is introduced and the enhancement mechanism of non-degenerate two-photon absorption is explained in this paper. Secondly, the basic method of measuring two-photon absorption is introduced in detail. Thirdly, the reports on nondegenerate two-photon absorption of three-dimensional semiconductor materials and two-dimensional materials are reviewed. Finally, the application progress of infrared detection and imaging, two-photon fluorescence microscope, all-optical switch and optical modulation is summarized, and the future research in this field is summarized and prospected.

     

    目录

    /

    返回文章
    返回