搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超导-冷原子复合系统的研究进展

吕庆先 李赛 涂海涛 廖开宇 梁振涛 颜辉 朱诗亮

引用本文:
Citation:

超导-冷原子复合系统的研究进展

吕庆先, 李赛, 涂海涛, 廖开宇, 梁振涛, 颜辉, 朱诗亮

Research progress of superconductor and cold atoms hybrid quantum system

Lv Qing-Xian, Li Sai, Tu Hai-Tao, Liao Kai-Yu, Liang Zhen-Tao, Yan Hui, Zhu Shi-Liang
PDF
HTML
导出引用
  • 超导-冷原子复合系统因能够实现快速门操控、长寿命存储和光纤中长距离传输等特点, 被认为是实现两台超导量子计算机光互联的最有潜力的复合体系之一. 本文综述了近年来基于超导-冷原子复合系统实现两台超导量子计算机光互联的研究进展, 包括超导芯片与冷原子相干耦合、微波光波相干转换和超导量子比特与量子转换器长程微波互联. 对该复合量子系统的研究将为超导量子计算机之间的实用化光纤互联奠定物理和技术基础, 有望在分布式超导量子计算机和杂化量子网络中获得广泛应用.
    The hybrid quantum system composed of superconductor and cold atoms is expected to achieve fast quantum gates, long-life quantum storage and long-distance transmission through optical fibers, making it one of the most promising hybrid quantum systems to realize optical interconnection between two superconducting quantum computers. In this paper, we comprehensively review the recent research advancements in the optical interconnection of two superconducting quantum computers, based on the superconductor and cold atoms hybrid quantum system, specifically the review covers the coherent coupling between superconducting chips and cold atoms, the coherent microwave-to-optics conversion, and the long-range microwave interconnection between superconducting qubits and quantum converters. The system is expected to provide a physical and technical foundation for practical optical-fiber interconnection of two superconducting quantum computers, and have broad applications in distributed superconducting quantum computation and hybrid quantum networks.
      通信作者: 梁振涛, ztliangscnu@163.com
    • 基金项目: 量子科技创新计划(批准号:2021ZD0301705)、国家自然科学基金(批准号: 12104168, 12074132, 12225405, 12247123, 12304287, U20A2074, 12074180)、国家重点研发计划(批准号: 2022YFA1405300, 2022YFA1405303, 2020YFA0309500)、中国博士后科学基金(批准号: 2022M721222, 2023T160233)、广东省基础与应用基础研究基金(批准号: 2021A1515110668, 2023A1515011550)和广州市科技计划(批准号: 202201010533)资助的课题.
      Corresponding author: Liang Zhen-Tao, ztliangscnu@163.com
    • Funds: Project supported by the Innovation Program for Quantum Science and Technology, China (Grant No. 2021ZD0301705), the National Natural Science Foundation of China (Grant Nos. 12104168, 12074132, 12225405, 12247123, 12304287, U20A2074, 12074180), the National Key Research and Development Program of China (Grant Nos. 2022YFA1405300, 2022YFA1405303, 2020YFA0309500), the China Postdoctoral Science Foundation (Grant Nos. 2022M721222, 2023T160233), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant Nos. 2021A1515110668, 2023A1515011550), and the Science and Technology Program of Guangzhou, China (Grant No. 202201010533).
    [1]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [2]

    Zhu Q L, Cao S R, Chen F S, et al. 2022 Sci. Bull. 67 240Google Scholar

    [3]

    Ye Y, Cao S, Wu Y, et al. 2021 Chin. Phys. Lett. 38 100301Google Scholar

    [4]

    Xu S, Sun Z Z, Wang K, et al. 2023 Chin. Phys. Lett. 40 060301Google Scholar

    [5]

    Monroe C, Raussendorf R, Ruthven A, Brown K R, Maunz P, Duan L M, Kim J 2014 Phys. Rev. A 89 022317Google Scholar

    [6]

    Nickerson N H, Fitzsimons J F, Benjamin S C 2014 Phys. Rev. X 4 041041

    [7]

    Wehner S, Elkouss D, Hanson R 2018 Science 362 303Google Scholar

    [8]

    李颖, 孙昌璞 2019 物理 48 477Google Scholar

    Li Y, Sun C P 2019 Physics 48 477Google Scholar

    [9]

    Awschalom D, Berggren K K, Bernien H, Bhave S, Carr L, Davids P, Economou S, Englund D, Faraon A, Fejer M 2021 PRX Quantum 2 017002Google Scholar

    [10]

    Zhong Y P, Chang H S, Bienfait A, Dumur É, Chou M H, Conner C R, Grebel J, Povey R G, Yan H X, Schuster D I, Cleland A N 2021 Nature 590 571Google Scholar

    [11]

    Niu J J, Zhang L B, Liu Y, et al. 2023 Nat. Electron. 6 235Google Scholar

    [12]

    Magnard P, Storz S, Kurpiers P, et al. 2020 Phys. Rev. Lett. 125 260502Google Scholar

    [13]

    Storz S, Schär J, Kulikov A, et al. 2023 Nature 617 265Google Scholar

    [14]

    Lambert N J, Rueda A, Sedlmeir F, Schwefel H G 2020 Adv. Quantum Technol. 3 1900077Google Scholar

    [15]

    Lauk N, Sinclair N, Barzanjeh S, Covey J P, Saman M, Spiropulu M, Simon C 2020 Quantum Sci. Technol. 5 020501Google Scholar

    [16]

    Kurizki G, Bertet P, Kubo Y, Mølmer K, Petrosyan D, Rabl P, Schmiedmayer J 2015 Proc. Natl. Acad. Sci. U. S. A. 112 3866Google Scholar

    [17]

    Verdú J, Zoubi H, Koller C, Majer J, Ritsch H, Schmiedmayer J 2009 Phys. Rev. Lett. 103 043603Google Scholar

    [18]

    Beck M A, Isaacs J A, Booth D, Pritchard J D, Saffman M, McDermott R 2016 Appl. Phys. Lett. 109 092602Google Scholar

    [19]

    Bernon S, Hattermann H, Bothner D, Knufinke M, Weiss P, Jessen F, Cano D, Kemmler M, Kleiner R, Koelle D, Fortágh J 2013 Nat. Commun. 4 2380Google Scholar

    [20]

    Hattermann H, Bothner D, Ley L Y, Ferdinand B, Wiedmaier D, Sárkány L, Kleiner R, Koelle D, Fortágh J 2017 Nat. Commun. 8 2254Google Scholar

    [21]

    Kaiser M, Glaser C, Li Y L, Grimmel J, Hattermann H, Bothner D, Koelle D, Kleiner R, Petrosyan D, Günther A, Fortágh J 2022 Phys. Rev. Res. 4 013207Google Scholar

    [22]

    Morgan A, Hogan S 2020 Phys. Rev. Lett. 124 193604Google Scholar

    [23]

    Andrews R W, Peterson R W, Purdy T P, Cicak K, Simmonds R W, Regal C A, Lehnert K W 2014 Nat. Phys. 10 321Google Scholar

    [24]

    Higginbotham A P, Burns P S, Urmey M D, Peterson R W, Kampel N S, Brubaker B M, Smith G, Lehnert K W, Regal C A 2018 Nat. Phys. 14 1038Google Scholar

    [25]

    Forsch M et al. 2020 Nat. Phys. 16 69Google Scholar

    [26]

    Sahu R, Hease W, Rueda A, Arnold G, Qiu L, Fink J M 2022 Nat. Commun. 13 1276Google Scholar

    [27]

    Fan L, Zou C L, Cheng R, Guo X, Han X, Gong Z, Tang H X 2018 Sci. Adv. 4 eaar4994Google Scholar

    [28]

    Kumar A, Suleymanzade A, Stone M, Taneja L, Anferov A, Schuster D I, Simon J 2023 Nature 615 614Google Scholar

    [29]

    Smith B D, Babaei B, Narayanan A, LeBlanc L J 2023 arXiv: 2305.19221v1

    [30]

    Tu H T, Liao K Y, Zhang Z X, Liu X H, Zheng S Y, Yang S Z, Zhang X D, Yan H, Zhu S L 2022 Nat. Photonics 16 291Google Scholar

    [31]

    Vogt T, Gross C, Han J, Pal S B, Lam M, Kiffner M, Li W 2019 Phys. Rev. A 99 023832Google Scholar

    [32]

    Fernandez-Gonzalvo X, Horvath S P, Chen Y H, Longdell J J 2019 Phys. Rev. A 10 033807

    [33]

    Hisatomi R, Osada A, Tabuchi Y, Ishikawa T, Noguchi A, Usami K, Yamazaki R, Nakamura Y 2016 Phys. Rev. B 93 174427Google Scholar

    [34]

    Shen Z, Xu G T, Zhang M, Zhang Y L, Wang Y, Chai C Z, Zou C L, Guo G C, Dong C H 2022 Phys. Rev. Lett. 129 243601Google Scholar

    [35]

    Kiffner M, Feizpour A, Kaczmarek K T, Jaksch D, Nunn J 2016 New J. Phys. 18 093030Google Scholar

    [36]

    Mirhosseini M, Sipahigil A, Kalaee M, Painter O 2020 Nature 588 599Google Scholar

    [37]

    Delaney R D, Urmey M D, Mittal S, Brubaker B M, Kindem J M, Burns P S, Regal C A, Lehnert K W 2022 Nature 606 489Google Scholar

    [38]

    Han X, Fu W, Zhong C C, Zou C L, Xu Y T, Sayem A A, Xu M R, Wang S H, Cheng R S, Jiang L, Tang H X 2020 Nat. Commun. 11 3237Google Scholar

    [39]

    Xu M R, Han X, Zou C L, Fu W, Xu Y T, Zhong C C, Jiang L, Tang H X 2020 Phys. Rev. Lett. 124 033602Google Scholar

    [40]

    Liang Z T, Zhang G Q, Yuan J H, Ye Q Z, Liao K Y, Xue Z Y, Yan H, Zhu S L 2022 Sci. China-Phys. Mech. Astron. 65 240362Google Scholar

    [41]

    Zhu S L, Wang Z D, Zanardi P 2005 Phys. Rev. Lett. 94 100502Google Scholar

    [42]

    Zhu S L, Wang Z D 2003 Phys. Rev. Lett. 91 187902Google Scholar

    [43]

    Liang Y, Shen P, Ji L N, Xue Z Y 2023 Phys. Rev. Appl. 19 024051Google Scholar

    [44]

    Ji L N, Liang Y, Shen P, Xue Z Y 2022 Phys. Rev. Appl. 18 044034Google Scholar

    [45]

    Chen T, Xue Z Y, Wang Z D 2022 Phys. Rev. Appl. 18 014062Google Scholar

    [46]

    Liang M J, Xue Z Y 2022 Phys. Rev. A 106 012603Google Scholar

    [47]

    McKenzie-Sell L, Xie J, Lee C M, Robinson J W, Ciccarelli C, Haigh J A 2019 Phys. Rev. B 99 140414Google Scholar

    [48]

    Sarabi B, Huang P, Zimmerman N M 2019 Phys. Rev. Appl. 11 014001

    [49]

    Stockklauser A, et al. 2017 Phys. Rev. X 7 011030

    [50]

    Wang C H, Zhang M, Jiang L 2022 Phys. Rev. Res. 4 L042023Google Scholar

    [51]

    Xiang Z L, Zhang M, Jiang L, Rabl P 2017 Phys. Rev. X 7 011035

    [52]

    Vermersch B, Guimond P O, Pichler H, Zoller P 2017 Phys. Rev. Lett. 118 133601Google Scholar

  • 图 1  超导原子芯片 (a) Z型超导线 (单位为mm); (b) 微磁阱中的冷原子囚禁; (c) 微磁阱中原子囚禁寿命

    Fig. 1.  Superconducting atom chip: (a) Z-type superconducting wire (in mm); (b) cold atoms confined in the superconducting microtrap; (c) the lifetime of atoms trapped in the microtrap.

    图 2  超导LC谐振腔芯片设计与测试 (a) 超导LC谐振腔COMSOL模型; (b) 在3.8 K温度下腔频为6.84 GHz的超导LC谐振腔芯片的|S21|曲线及其Q值; (c) 超导LC谐振腔频率随温度变化, 当温度为4.45 K时, 可以实现LC谐振腔与冷原子的共振耦合

    Fig. 2.  Design and test results of superconducting LC resonator: (a) Model of superconducting LC resonator by COMSOL software; (b) microwave transmission |S21| at 3.8 K of superconducting LC resonator with center frequency of 6.84 GHz and its corresponding Q factor; (c) the frequencies of superconducting LC resonator varies with temperature. When the temperature is 4.45 K, the resonant coupling between LC resonator and cold atoms can be realized.

    图 3  超导LC谐振腔芯片与冷原子相干耦合 (a) 超导LC谐振腔芯片尺寸(单位为mm); (b), (c) Z型超导原子芯片与超导LC谐振腔定位原理图与实物图

    Fig. 3.  Coherent coupling between superconducting LC resonator and cold atoms: (a) Size of superconducting LC resonator (in mm); (b), (c) positioning schematic diagram and physical diagram of Z-type superconducting atom chip and superconducting LC resonator

    图 4  基于冷87Rb原子系综六波混频的毫米波-光波转换方案 (a) 毫米波透镜聚焦毫米波的毫米波-光波转换方案; (b) 波导收束毫米波的毫米波-光波转换方案; (c) 毫米波-光波转换方案原子能级图[35]

    Fig. 4.  Millimeter-wave-to-optics conversion via six-wave mixing based on cold 87Rb atomic ensembles: (a) Millimeter-wave-to-optics conversion with mm-wave fields focused by dielectric lenses; (b) millimeter-wave-to-optics conversion with mm-wave fields confined by waveguide; (c) six-level system of millimeter-wave-to-optics conversion[35].

    图 5  基于非共振散射的微波-光波转换 (a) 六能级系统; (b) 转换效率和原子暗态布局数随光学厚度的变化; (c) 最大转换效率与激光失谐、里德伯退相率的依赖关系[30]

    Fig. 5.  Microwave-to-optics conversion via off-resonant scattering: (a) Six-level system; (b) conversion efficiency and dark-state probability versus optical density; (c) maximum conversion efficiency versus detunings of probe laser and dephasing rates of Rydberg state[30].

    图 6  微波光波相干转换实验结果 (a) 实验构架与时序; (b) 微波光波的波形以及光外差检测结果; (c) 探测光与产生光的谱线; (d) 全共振及非共振的微波频率上转换随光学厚度的变化[30]

    Fig. 6.  Experimental results of microwave-to-optics conversion: (a) Experimental setup and time sequence; (b) temporal waveforms of the input microwave pulse and output optical pulses, and the relative phase of a heterodyne signal for the phase-modulated microwave; (c) spectra of transmission and generated optical power; (d) power PL of output optical pulses versus optical depth for off-resonant and near-resonant scatterings[30].

    图 7  基于四波混频的光学光子与毫米波光子相干转换 (a) 实验方案, 左图为转换所需的原子能级和波长, 右图为毫米波光波转换接口的内部结构; (b) 实物图; (c) 超导腔和光腔的横截面图; (d) 空光腔的传输特性曲线, 半高全宽$ {\kappa }_{{\rm{o}}{\rm{p}}{\rm{t}}} $ = 2π × 1.7 MHz; (e) 在5 K温区的超导毫米波谐振腔的反射谱, 半高全宽$ {\kappa }_{{\rm{m}}{\rm{m}}} $ = 2π × 800 kHz[28]

    Fig. 7.  Millimeter-wave-to-optics conversion via four-wave mixing: (a) Schematic of the system, atomic energy levels and wavelengths of light involved in transduction (left), internal structure of the optical and mmwave interface (right); (b) image of the physical hybrid cavity; (c) expanded view of the main assembly; (d) bare optical cavity transmission with full-width half-maximum (FWHM) linewidth $ {\kappa }_{{\rm{o}}{\rm{p}}{\rm{t}}} $ = 2π × 1.7 MHz; (e) reflection spectrum of the superconducting mm wave cavity at 5 K with FWHM linewidth $ {\kappa }_{{\rm{m}}{\rm{m}}} $ = 2π × 800 kHz[28].

    图 8  基于热87Rb原子系综三波混频的微波-光波转换 (a) 频分多路复用原子转换器方案; (b) 微波腔-铷泡复合系统示意图; (c) 微波-光波转换能级图[29]

    Fig. 8.  Microwave-to-optics conversion via three-wave mixing based on thermal 87Rb atomic ensembles: (a) Schematic of the atomic frequency-division multiplexing scheme; (b) the microwave cavity-vapor cell hybrid system; (c) three-level system of microwave-to-optics conversion[29].

    图 9  15 mK超导量子比特与1 K冷台附近里德伯冷原子基于1 K热耦合腔长程互联的实验装置示意图[40]

    Fig. 9.  Schematic of the hybrid system. A superconducting transmon qubit (red) on chip 1 anchored to a 15 mK plate resonantly couples with a standing mode of a superconducting coaxial-cable cavity (green) via a tunable coupler (orange cross). A superconducting LC resonator (blue) on chip 2 anchored to a 1 K plate resonantly couples with the same coaxial-cable cavity and a Rydberg-atom qubit (purple)[40].

    图 10  数值仿真结果 (a)保真度与腔腔耦合强度J和腔Q值的依赖关系; (b)并发度与腔腔耦合强度J和腔Q值的依赖关系[40]

    Fig. 10.  Simulation results: (a) Fidelity versus the cavity-resonator coupling strength J and the internal Q factor; (b) concurrence versus the cavity-resonator coupling strength J and the internal Q factor[40].

    表 1  超导芯片微波腔与冷原子相干耦合的实验研究进展

    Table 1.  Experimental research progress on coherent coupling of superconducting-chip microwave resonators and cold atoms.

    研究组 图宾根大学[20] 图宾根大学[21] 伦敦大学[22] 华南师大
    原子编码态 基态 里德伯态 里德伯态 基态
    超导腔形式 共面波导腔 共面波导腔 共面波导腔 LC谐振腔
    耦合方式 磁耦合 电耦合 电耦合 磁耦合
    耦合强度 $ (2{\text{π}}\times 0.5) $ Hz $ (2{\text{π}}\times 40) $ kHz 待测
    下载: 导出CSV

    表 2  基于中性原子微波光波相干转换的实验研究进展

    Table 2.  Experimental research progress of microwave-to-optics conversion based on neutral atoms.

    研究组 新加坡国立大学[31] 华南师大[30] 芝加哥大学[28] 阿尔伯塔大学[29]
    原子团温度 冷原子 冷原子 冷原子 热原子
    混频形式 六波混频 六波混频 四波混频 三波混频
    内转换效率/% 5 82 58
    总转换效率/% 2.5 $ 3\times {10}^{-9} $
    带宽/MHz 15 1 0.36 1.00
    下载: 导出CSV
  • [1]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [2]

    Zhu Q L, Cao S R, Chen F S, et al. 2022 Sci. Bull. 67 240Google Scholar

    [3]

    Ye Y, Cao S, Wu Y, et al. 2021 Chin. Phys. Lett. 38 100301Google Scholar

    [4]

    Xu S, Sun Z Z, Wang K, et al. 2023 Chin. Phys. Lett. 40 060301Google Scholar

    [5]

    Monroe C, Raussendorf R, Ruthven A, Brown K R, Maunz P, Duan L M, Kim J 2014 Phys. Rev. A 89 022317Google Scholar

    [6]

    Nickerson N H, Fitzsimons J F, Benjamin S C 2014 Phys. Rev. X 4 041041

    [7]

    Wehner S, Elkouss D, Hanson R 2018 Science 362 303Google Scholar

    [8]

    李颖, 孙昌璞 2019 物理 48 477Google Scholar

    Li Y, Sun C P 2019 Physics 48 477Google Scholar

    [9]

    Awschalom D, Berggren K K, Bernien H, Bhave S, Carr L, Davids P, Economou S, Englund D, Faraon A, Fejer M 2021 PRX Quantum 2 017002Google Scholar

    [10]

    Zhong Y P, Chang H S, Bienfait A, Dumur É, Chou M H, Conner C R, Grebel J, Povey R G, Yan H X, Schuster D I, Cleland A N 2021 Nature 590 571Google Scholar

    [11]

    Niu J J, Zhang L B, Liu Y, et al. 2023 Nat. Electron. 6 235Google Scholar

    [12]

    Magnard P, Storz S, Kurpiers P, et al. 2020 Phys. Rev. Lett. 125 260502Google Scholar

    [13]

    Storz S, Schär J, Kulikov A, et al. 2023 Nature 617 265Google Scholar

    [14]

    Lambert N J, Rueda A, Sedlmeir F, Schwefel H G 2020 Adv. Quantum Technol. 3 1900077Google Scholar

    [15]

    Lauk N, Sinclair N, Barzanjeh S, Covey J P, Saman M, Spiropulu M, Simon C 2020 Quantum Sci. Technol. 5 020501Google Scholar

    [16]

    Kurizki G, Bertet P, Kubo Y, Mølmer K, Petrosyan D, Rabl P, Schmiedmayer J 2015 Proc. Natl. Acad. Sci. U. S. A. 112 3866Google Scholar

    [17]

    Verdú J, Zoubi H, Koller C, Majer J, Ritsch H, Schmiedmayer J 2009 Phys. Rev. Lett. 103 043603Google Scholar

    [18]

    Beck M A, Isaacs J A, Booth D, Pritchard J D, Saffman M, McDermott R 2016 Appl. Phys. Lett. 109 092602Google Scholar

    [19]

    Bernon S, Hattermann H, Bothner D, Knufinke M, Weiss P, Jessen F, Cano D, Kemmler M, Kleiner R, Koelle D, Fortágh J 2013 Nat. Commun. 4 2380Google Scholar

    [20]

    Hattermann H, Bothner D, Ley L Y, Ferdinand B, Wiedmaier D, Sárkány L, Kleiner R, Koelle D, Fortágh J 2017 Nat. Commun. 8 2254Google Scholar

    [21]

    Kaiser M, Glaser C, Li Y L, Grimmel J, Hattermann H, Bothner D, Koelle D, Kleiner R, Petrosyan D, Günther A, Fortágh J 2022 Phys. Rev. Res. 4 013207Google Scholar

    [22]

    Morgan A, Hogan S 2020 Phys. Rev. Lett. 124 193604Google Scholar

    [23]

    Andrews R W, Peterson R W, Purdy T P, Cicak K, Simmonds R W, Regal C A, Lehnert K W 2014 Nat. Phys. 10 321Google Scholar

    [24]

    Higginbotham A P, Burns P S, Urmey M D, Peterson R W, Kampel N S, Brubaker B M, Smith G, Lehnert K W, Regal C A 2018 Nat. Phys. 14 1038Google Scholar

    [25]

    Forsch M et al. 2020 Nat. Phys. 16 69Google Scholar

    [26]

    Sahu R, Hease W, Rueda A, Arnold G, Qiu L, Fink J M 2022 Nat. Commun. 13 1276Google Scholar

    [27]

    Fan L, Zou C L, Cheng R, Guo X, Han X, Gong Z, Tang H X 2018 Sci. Adv. 4 eaar4994Google Scholar

    [28]

    Kumar A, Suleymanzade A, Stone M, Taneja L, Anferov A, Schuster D I, Simon J 2023 Nature 615 614Google Scholar

    [29]

    Smith B D, Babaei B, Narayanan A, LeBlanc L J 2023 arXiv: 2305.19221v1

    [30]

    Tu H T, Liao K Y, Zhang Z X, Liu X H, Zheng S Y, Yang S Z, Zhang X D, Yan H, Zhu S L 2022 Nat. Photonics 16 291Google Scholar

    [31]

    Vogt T, Gross C, Han J, Pal S B, Lam M, Kiffner M, Li W 2019 Phys. Rev. A 99 023832Google Scholar

    [32]

    Fernandez-Gonzalvo X, Horvath S P, Chen Y H, Longdell J J 2019 Phys. Rev. A 10 033807

    [33]

    Hisatomi R, Osada A, Tabuchi Y, Ishikawa T, Noguchi A, Usami K, Yamazaki R, Nakamura Y 2016 Phys. Rev. B 93 174427Google Scholar

    [34]

    Shen Z, Xu G T, Zhang M, Zhang Y L, Wang Y, Chai C Z, Zou C L, Guo G C, Dong C H 2022 Phys. Rev. Lett. 129 243601Google Scholar

    [35]

    Kiffner M, Feizpour A, Kaczmarek K T, Jaksch D, Nunn J 2016 New J. Phys. 18 093030Google Scholar

    [36]

    Mirhosseini M, Sipahigil A, Kalaee M, Painter O 2020 Nature 588 599Google Scholar

    [37]

    Delaney R D, Urmey M D, Mittal S, Brubaker B M, Kindem J M, Burns P S, Regal C A, Lehnert K W 2022 Nature 606 489Google Scholar

    [38]

    Han X, Fu W, Zhong C C, Zou C L, Xu Y T, Sayem A A, Xu M R, Wang S H, Cheng R S, Jiang L, Tang H X 2020 Nat. Commun. 11 3237Google Scholar

    [39]

    Xu M R, Han X, Zou C L, Fu W, Xu Y T, Zhong C C, Jiang L, Tang H X 2020 Phys. Rev. Lett. 124 033602Google Scholar

    [40]

    Liang Z T, Zhang G Q, Yuan J H, Ye Q Z, Liao K Y, Xue Z Y, Yan H, Zhu S L 2022 Sci. China-Phys. Mech. Astron. 65 240362Google Scholar

    [41]

    Zhu S L, Wang Z D, Zanardi P 2005 Phys. Rev. Lett. 94 100502Google Scholar

    [42]

    Zhu S L, Wang Z D 2003 Phys. Rev. Lett. 91 187902Google Scholar

    [43]

    Liang Y, Shen P, Ji L N, Xue Z Y 2023 Phys. Rev. Appl. 19 024051Google Scholar

    [44]

    Ji L N, Liang Y, Shen P, Xue Z Y 2022 Phys. Rev. Appl. 18 044034Google Scholar

    [45]

    Chen T, Xue Z Y, Wang Z D 2022 Phys. Rev. Appl. 18 014062Google Scholar

    [46]

    Liang M J, Xue Z Y 2022 Phys. Rev. A 106 012603Google Scholar

    [47]

    McKenzie-Sell L, Xie J, Lee C M, Robinson J W, Ciccarelli C, Haigh J A 2019 Phys. Rev. B 99 140414Google Scholar

    [48]

    Sarabi B, Huang P, Zimmerman N M 2019 Phys. Rev. Appl. 11 014001

    [49]

    Stockklauser A, et al. 2017 Phys. Rev. X 7 011030

    [50]

    Wang C H, Zhang M, Jiang L 2022 Phys. Rev. Res. 4 L042023Google Scholar

    [51]

    Xiang Z L, Zhang M, Jiang L, Rabl P 2017 Phys. Rev. X 7 011035

    [52]

    Vermersch B, Guimond P O, Pichler H, Zoller P 2017 Phys. Rev. Lett. 118 133601Google Scholar

  • [1] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量. 物理学报, 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [2] 高海燕, 杨欣达, 周波, 贺青, 韦联福. 耦合诱导的四分之一波长超导谐振器微波传输透明. 物理学报, 2022, 71(6): 064202. doi: 10.7498/aps.71.20211758
    [3] 陈永强, 许光远, 王军, 方宇, 吴幸智, 丁亚琼, 孙勇. 基于非对称微波光子晶体的电磁二极管. 物理学报, 2022, 71(3): 034701. doi: 10.7498/aps.71.20211291
    [4] 王志梅, 王虹, 薛乃涛, 成高艳. 自旋轨道耦合量子点系统中的量子相干. 物理学报, 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [5] 林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起. 三端口光纤耦合原子气室探头的开发及其微波数字通信应用. 物理学报, 2022, 71(17): 170702. doi: 10.7498/aps.71.20220594
    [6] 徐达, 王逸璞, 李铁夫, 游建强. 微波驱动下超导量子比特与磁振子的相干耦合. 物理学报, 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [7] 陈永强, 许光远, 王军, 方宇, 吴幸智, 丁亚琼, 孙勇. 基于非对称微波光子晶体的电磁二极管. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211291
    [8] 李妤晨, 陈航宇, 宋建军. 用于提高微波无线能量传输系统接收端能量转换效率的肖特基二极管. 物理学报, 2020, 69(10): 108401. doi: 10.7498/aps.69.20191415
    [9] 麻艳娜, 王文睿, 宋开臣, 于晋龙, 马闯, 张华芳. 基于双波长时域合成技术的微波光子波形产生. 物理学报, 2019, 68(17): 174203. doi: 10.7498/aps.68.20190151
    [10] 许家豪, 王云新, 王大勇, 周涛, 杨锋, 钟欣, 张弘骉, 杨登才. 基于载波抑制单边带调制的微波光子本振倍频上转换方法. 物理学报, 2019, 68(13): 134204. doi: 10.7498/aps.68.20190266
    [11] 汪仲清, 赵小奇, 周贤菊. 原子在弱相干场光纤耦合腔系统中的纠缠特性. 物理学报, 2013, 62(22): 220302. doi: 10.7498/aps.62.220302
    [12] 卢道明. 弱相干场耦合腔系统中的纠缠特性. 物理学报, 2013, 62(3): 030302. doi: 10.7498/aps.62.030302
    [13] 蒋利娟, 张现周, 贾光瑞, 张永慧, 夏立华. 啁啾微波场中里德伯锂原子的相干激发与控制. 物理学报, 2013, 62(1): 013101. doi: 10.7498/aps.62.013101
    [14] 王身云, 刘少斌. 基于等离子体缺陷层的一维可调谐微波光子晶体滤波特性. 物理学报, 2009, 58(10): 7062-7066. doi: 10.7498/aps.58.7062
    [15] 廖 旭, 任学藻, 周自刚. 耦合孔对微波腔的影响研究. 物理学报, 2008, 57(7): 3949-3953. doi: 10.7498/aps.57.3949
    [16] 王淑芳, B. B. Jin, 刘 震, 周岳亮, 陈正豪, 吕惠宾, 程波林, 杨国桢. MgB2超导薄膜的微波测量. 物理学报, 2005, 54(5): 2325-2328. doi: 10.7498/aps.54.2325
    [17] 梁文青, 储开芹, 张智明, 谢绳武. 超冷V型三能级原子注入的微波激射:原子相干性对腔场光子统计的影响. 物理学报, 2001, 50(12): 2345-2355. doi: 10.7498/aps.50.2345
    [18] 崔广霁, 孟小凡, 邵凯. 谐振型Josephson隧道结与外加微波的磁耦合(Ⅰ). 物理学报, 1982, 31(12): 1-7. doi: 10.7498/aps.31.1-2
    [19] 崔广霁, 孟小凡, 邵凯. 谐振型Josephson隧道结与外加微波的磁耦合(Ⅱ). 物理学报, 1982, 31(12): 8-12. doi: 10.7498/aps.31.8
    [20] 黄宏嘉. 微波强耦合论. 物理学报, 1962, 18(1): 27-55. doi: 10.7498/aps.18.27
计量
  • 文章访问数:  2882
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-14
  • 修回日期:  2023-10-06
  • 上网日期:  2023-10-20
  • 刊出日期:  2023-10-20

/

返回文章
返回