搜索

x
中国物理学会期刊

生物分子模拟中的机器学习方法

CSTR: 32037.14.aps.72.20231624

Machine learning in molecular simulations of biomolecules

CSTR: 32037.14.aps.72.20231624
PDF
HTML
导出引用
  • 分子模拟技术已成为人们从分子层次探究生命原理的强有力工具. 经过近50年的发展, 生物分子模拟能够实现对蛋白折叠、构象运动和蛋白-蛋白分子相互作用等复杂分子体系的生物过程的动力学和热力学性质进行定量表征. 近年来, 以深度学习为代表的机器学习算法的应用进一步推动了生物分子模拟技术的发展. 本文对生物分子模拟中的机器学习方法进行综述, 重点讨论机器学习算法在提高生物分子力场精度、分子模拟构象采样效率、以及高维生物分子模拟数据处理等方面取得的重要进展. 在此基础上, 对未来研究中基于机器学习技术进一步克服生物分子模拟的精度和效率瓶颈、扩展生物分子模拟适用范围、实现计算模拟与实验测量的深度融合做了展望.

     

    Molecular simulation has already become a powerful tool for studying life principles at a molecular level. The past 50-year researches show that molecular simulation has been able to quantitatively characterize the kinetic and thermodynamic properties of complex molecular processes, such as protein folding and conformational changes. In recent years, the application of machine learning algorithms represented by deep learning has further promoted the development of molecular simulation. This work reviews machine learning methods in biomolecular simulation, focusing on the important progress made by machine learning algorithms in improving the accuracy of molecular force fields, the efficiency of molecular simulation conformation sampling, and also the processing of high-dimensional simulation data. The future researches to further overcome the bottleneck of accuracy and efficiency of molecular simulation, expand the scope of molecular simulation, and realize the integration of computational simulation and experimental based on machine learning technique is prospected.

     

    目录

    /

    返回文章
    返回