搜索

x
中国物理学会期刊

冲击下铁的各向异性对晶界附近相变的影响

CSTR: 32037.14.aps.73.20231081

Influence of iron anisotropy on phase transition near grain boundary under shock

CSTR: 32037.14.aps.73.20231081
PDF
HTML
导出引用
  • 由于铁在国防和工业领域扮演着重要的角色, 因此研究其动态高压下的行为有着重要的意义. 本文拟采用大规模非平衡分子动力学方法研究冲击加载下铁的各向异性在双晶铁中对相变的影响, 通过追踪模型的局域结构、剪切应力分布和冲击后的形貌特点, 分析影响晶界两侧冲击响应的因素. 研究表明, 沿非中心对称晶向冲击可造成对称晶界两侧的相变阈值、相变路径和相变模式出现较大的差异, 考虑到该类型晶界两侧微观结构的对称性, 这种不对称的冲击响应与人们的惯性认知存在着偏差. 本文揭示了晶格的各向异性对冲击加载下晶界两侧的相变有重要的影响, 可以为多晶金属和合金的冲击实验提供一定的理论支持.

     

    As is well known, iron plays an important role in the fields of national defense and industry, so it is of great significance to study its behavior under dynamic high pressure. As one of the most common defects in metals in nature, grain boundaries have an important influence on the mechanical properties and deformation of materials under shock. This work intends to use large-scale non-equilibrium molecular dynamics simulation to study the influence of iron anisotropy on the phase transition in bicrystal under shock loading. By tracking the local structure, shear stress distribution and morphology characteristics after shock on both sides of the grain boundaries, the factors affecting the response on both sides of the grain boundary are analyzed. Our research result shows that shocking along the non-centrosymmetric grain direction can cause significant differences in the phase transition threshold, path and mode on both sides of the symmetric grain boundary. Especially, the different phase transition dynamic processes on both sides of the sigma11 grain boundary are discussed in detail in this work, which have been rarely discussed in previous studies. Considering the symmetry of the microstructure on both sides of this type of grain boundary, the result of asymmetric shock response is different from people’s inertial cognition. Finally, it is found that the atoms in both models will shift along the direction perpendicular to the shocked direction under shock, indicating that the shock wave generated by the piston method should no longer be simply regarded as one-dimensional when shocked along the non centrosymmetric crystal direction, and the displacement of atoms along the direction perpendicular to the shocked direction is closely related to the symmetry of the crystal, which causes significant differences in shear stress on both sides of the grain boundary and ultimately affects the shock response. This study reveals that the anisotropy of lattice has an important effect on the phase transition on both sides of grain boundaries under shock loading, which can provide theoretical support for the experimental studies of polycrystalline metals and alloys under shock.

     

    目录

    /

    返回文章
    返回