搜索

x
中国物理学会期刊

基于高阶信息的网络相似性比较方法

CSTR: 32037.14.aps.73.20231096

Network similarity comparison method based on higher-order information

CSTR: 32037.14.aps.73.20231096
PDF
HTML
导出引用
  • 量化复杂网络之间的结构相似性是网络科学中一个基本且具有挑战性的问题, 在医学、社会学等多个领域发挥了至关重要的作用. 传统的网络比较方法通常基于简单的结构特征, 例如节点度分布、最短路径长度等, 这些方法可能无法充分捕捉网络的全局结构信息, 导致得到的网络相似性不精准. 本文提出了一种基于高阶信息的网络相似性比较方法, 该方法同时考虑了网络的全局结构和局部结构. 具体而言, 通过构建网络节点的高阶聚类系数分布和节点间距离分布, 并利用基于这两个分布的Jensen-Shannon散度来量化网络之间的相似性. 实验结果表明, 相较于其他基线方法, 本文提出的方法不仅能高效地比较不同网络的相似性, 且在对真实网络进行扰动的过程中也表现出鲁棒性.

     

    Quantifying structural similarity between complex networks presents a fundamental and formidable challenge in network science, which plays a crucial role in various fields, such as bioinformatics, social science, and economics, and serves as an effective method for network classification, temporal network evolution, network generated model evaluation, etc. Traditional network comparison methods often rely on simplistic structural properties such as node degree and network distance. However, these methods only consider the local or global aspect of a network, leading to inaccuracies in network similarity assessments. In this study, we introduce a network similarity comparison method based on the high-order structure. This innovative approach takes into account the global and the local structure of a network, resulting in a more comprehensive and accurate quantification of the network difference. Specifically, we construct distributions of higher-order clustering coefficient and distance between nodes in a network. The Jensen-Shannon divergence, based on these two distributions, is used to quantitatively measure the similarity between two networks, offering a more refined and robust measure of network similarity. To validate the effectiveness of our proposed method, we conduct a series of comprehensive experiments on the artificial and the real-world network, spanning various domains and applications. By meticulously fine-tuning the parameters related to three different artificial network generation models, we systematically compare the performances of our method under various parameter settings in the same network. In addition, we generate four different network models with varying levels of randomization, creating a diverse set of test cases to evaluate the robustness and adaptability of the method. In artificial networks, we rigorously compare our proposed method with other baseline techniques, consistently demonstrating its superior accuracy and stability through experimental results; in real networks, we select datasets from diverse domains and confirm the reliability of our method by conducting extensive similarity assessments between real networks and their perturbed reconstructed counterparts. Furthermore, in real networks, the rigorous comparison between our method and null models underscores its robustness and stability across a broad spectrum of scenarios and applications. Finally, a meticulous sensitivity analysis of the parameters reveals that our method exhibits remarkable performance consistency across networks of different types, scales, and complexities.

     

    目录

    /

    返回文章
    返回