-
疏水力作为胶体物理化学及生物大分子体系中重要作用力, 具有典型的多尺度作用程特征, 其中亚稳态液膜空化气泡桥接诱发长程疏水力和固液界面水分子重排熵效应诱导短程疏水力假说占据着当前学术主流, 但仍缺少系统理论研究. 为进一步阐明基于亚稳态液膜空化的长程疏水力作用机制, 借助原子力显微镜(AFM)及分子动力学模拟对全氟辛基三氯硅烷疏水化颗粒与表面间长程疏水力进行了系统研究. AFM力测试结果表明: 长程疏水力作用程随接近次数增加而逐渐增大并逐渐趋于稳定, 第十次接触时进针曲线跳入黏附距离达到502.01 nm, 退针曲线中观察到了预示空化气泡毛细桥断裂的台阶. 此外, 发现经典毛细力数学模型可以较好地拟合进针曲线, 通过计算得到毛细桥体积约为0.30 μm3, 从理论角度直接验证了亚稳态液膜空化气泡毛细桥的存在. 进一步借助GROMACS (GROningen MAchine for Chemical Simulations)大尺度牵引分子动力学模拟从分子尺度探索疏水颗粒分离过程中空化气泡毛细桥产生、演化过程与力学行为的内在关联机制, 结果表明: 疏水颗粒从基板表面跳出分离瞬间, 产生的局部压降吸引氮气分子向液膜内部扩散从而形成空化气泡毛细桥, 同时, 在毛细桥断裂时刻在计算弹簧势力曲线中观察到了力跳跃行为. 最后研究了溶液气体含量对长程疏水力的影响规律, 发现气体分子含量和空化气泡毛细桥体积增长速率与毛细桥拉伸断裂长度呈现正相关关系, 进一步表明了长程疏水力的气体浓度依赖效应. 基于亚稳态液膜空化的长程疏水力作用机制的揭示有助于进一步完善胶体物理化学及生物大分子间相互作用理论体系, 同时对调控实际矿物浮选过程具有重要指导意义.Hydrophobic force, a key driving force in colloid physicochemical system and biological macromolecular system, exhibits a distinct multi-scale effect. The prevailing scholarly consensus attributes long-range hydrophobic force to bubble bridging, facilitated by unstable liquid film cavitation, while short-range force is thought to arise from the reorganization of water molecules at the solid-liquid interface. However, a comprehensive theoretical study remains elusive. To further elucidate the mechanism of the long-range hydrophobic force based on unstable liquid film cavitation, we carry out systematic research on the long-range hydrophobic force between perfluorooctyl trichlorosilane hydrophobic particles and the surface, by utilizing atomic force microscopy (AFM) and molecular dynamics simulations. According to AFM force tests, the long-range hydrophobic force escalates incrementally with subsequent close contacts before reaching a plateau. On the tenth contact, the penetration curve exhibits a sudden jump to an adhesion distance of 502.01 nm. A distinct step in the retraction curve suggests the rupture of the cavitation bubble capillary bridge. Importantly, the classical capillary force mathematical model provides an effective fit for the penetration curve. Our calculations estimate the volume of the capillary bridge at 0.30 μm³, offering direct theoretical evidence of the unstable liquid film cavitation bubble capillary bridge. Further insights are gained from large-scale tensile molecular dynamics simulations by using GROningen MAchine for Chemical Simulations (GROMACS). The inherent correlation mechanism of the formation, evolution, and mechanical behavior of the cavitation bubble capillary bridge in the separation process of hydrophobic particles are further explored from a molecular perspective. The results demonstrate that the local pressure drop occurring at the moment of “jump-out” separation of the hydrophobic particles attracts nitrogen molecules to diffuse into the liquid film, thereby forming a cavitation bubble capillary bridge. Simultaneously, a jumping behavior is observed in the calculated spring potential curve at the moment of capillary bridge rupture. Finally, the influence of solution gas content on long-range hydrophobic force is investigated. There is a positive correlation between gas molecule content and both the growth rate of cavitation bubble capillary bridge volume and the length of capillary bridge stretch-rupture, further demonstrating the gas concentration dependence of long-range hydrophobic forces. In a word, revealing the long-range hydrophobic force mechanism based on the cavitation of unstable liquid film can enhance our understanding of the interaction between colloid physical chemistry and biological macromolecules. Meanwhile, hydrophobic force is the fundamental driving force of particle-bubble adhesion in mineral flotation system, and the revelation of its action mechanism has important guiding significance for regulating the actual mineral flotation process.
-
Keywords:
- long-range hydrophobic force /
- atomic force microscope /
- cavitation /
- capillary force /
- molecular dynamics simulation








下载: