搜索

x
中国物理学会期刊

基于第一性原理GGA+U方法研究Si掺杂β-Ga2O3电子结构和光电性质

CSTR: 32037.14.aps.73.20231147

Investigation of electronic structure and optoelectronic properties of Si-doped β-Ga2O3 using GGA+U method based on first-principle

CSTR: 32037.14.aps.73.20231147
PDF
HTML
导出引用
  • 采用基于密度泛函理论的GGA+U方法, 计算了本征和Si掺杂β-Ga2O3的形成能、能带结构、态密度、差分电荷密度和光电性质. 结果表明, Si取代四面体Ga(1)更容易实验合成, 得到的β-Ga2O3带隙和Ga-3d态峰值与实验结果吻合较好, 且贫氧条件下更倾向于获得有效掺杂. Si掺杂后, 总能带向低能端移动, 费米能级进入导带, 呈现n型导电性; Si-3s轨道电子占据导带底, 电子公有化程度加强, 电导率明显改善. 随着Si掺杂浓度的增加, 介电函数ε2(ω)的结果表明, 激发导电电子的能力先增强后减弱, 与电导率的量化分析结果一致. 光学带隙增大, 吸收带边上升速度减慢; 吸收光谱结果显示Si掺杂β-Ga2O3具有较强的深紫外光电探测能力. 计算结果将为下一步Si掺杂β-Ga2O3实验研究和器件设计的创新及优化提供理论参考.

     

    In this work, the formation energy, band structure, state density, differential charge density and optoelectronic properties of undoped β-Ga2O3 and Si doped β-Ga2O3 are calculated by using GGA+U method based on density functional theory. The results show that the Si-substituted tetrahedron Ga(1) is more easily synthesized experimentally, and the obtained β-Ga2O3 band gap and Ga-3d state peak are in good agreement with the experimental results, and the effective doping is more likely to be obtained under oxygen-poor conditions. After Si doping, the total energy band moves toward the low-energy end, and Fermi level enters the conduction band, showing n-type conductive characteristic. The Si-3s orbital electrons occupy the bottom of the conduction band, the degree of electronic occupancy is strengthened, and the conductivity is improved. The results from dielectric function ε2(ω) show that with the increase of Si doping concentration, the ability to stimulate conductive electrons first increases and then decreases, which is in good agreement with the quantitative analysis results of conductivity. The optical band gap increases and the absorption band edge rises slowly with the increase of Si doping concentration. The results of absorption spectra show that Si-doped β-Ga2O3 has the ability to realize the strong deep ultraviolet photoelectric detection. The calculated results provide a theoretical reference for further implementing the experimental investigation and the optimization innovation of Si-doped β-Ga2O3 and relative device design.

     

    目录

    /

    返回文章
    返回