-
二维磁性材料是近年来发展起来的新兴材料,在单层或者少层的原子厚度中以其独特的磁性特性和结构特征而备受关注。其中铁磁性材料在信息存储和处理等方面有着广泛的应用,所以当前研究主要集中在丰富二维铁磁数据库以及开发磁调制的修饰策略上。本文通过常压化学气相沉积法在云母片衬底上成功生长出了二维钒掺杂Cr2S3纳米片,获得了钒源温度765℃和质量0.010 g为纳米片生长情况最适中条件,并通过光学显微镜、原子力显微镜、拉曼光谱仪、扫描电子显微镜、X射线能谱、X射线光电子能谱对纳米片进行了表征。同时掺杂样品的磁性表征表明钒掺杂后样品居里转变温度变为105 K,由亚铁磁性变为铁磁性,矫顽力也显著增大,证明钒掺杂可以有效地调控Cr2S3纳米片的磁性。这些研究结果将有望推动钒掺杂Cr2S3材料向着实际应用的的可能性,成为下一代自旋电子应用的理想候选材料之一。Two-dimensional magnetic materials are emerging materials developed in recent years and have attracted much attention for their unique magnetic properties and structural features in single or few layers of atomic thickness. Among them, ferromagnetic materials have a wide range of applications such as information memory and processing. Therefore the current research is mainly focused on enriching the two-dimensional ferromagnetic database and developing modification strategies for magnetic modulation. In this paper, two-dimensional vanadium-doped Cr2S3nanosheets were successfully grown on mica substrates by atmospheric pressure chemical vapour deposition. The thickness and size of the nanosheets can be effectively regulated by changing the temperature and mass of vanadium source VCl3 powders, with the temperature of 765℃ and the mass of 0.010 g as the most appropriate conditions for the growth of nanosheets. The nanosheets were also characterised by optical microscopy, atomic force microscopy, raman spectroscopy, scanning electron microscopy, X-ray energy spectroscopy, X-ray photoelectron spectroscopy, and the nanosheets were regular in shape, with flat surfaces and controllable thicknesses, and high quality vanadium-doped Cr2S3 nanosheets were prepared. Meanwhile, the magnetic characterisation of the doped samples showed that the Curie transition temperature of the vanadium doped samples changed to 105 K, and the maximum magnetic moment point of 75 K in the M-T curve disappeared after V doping, and from subferromagnetic to ferromagnetic, and the coercivity in the M-H curve also increased significantly, which proved that the vanadium doping could effectively regulate the magnetic properties of Cr2S3 nanosheets. These results are expected to advance the possibility of vanadium-doped Cr2S3 materials toward practical applications and become one of the ideal candidate material for next generation spintronic applications.
-
Keywords:
- two-dimensional magnetic materials /
- chemical vapour deposition /
- vanadium-doped Cr2S3 /
- ferromagnetism
-
[1] Burch K S, Mandrus D, Park J -G 2018 Nature 563 47
[2] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Pablo Jarillo-Herrero P, Xu X D 2017 Nature 546 270
[3] Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J, Jarillo-Herrero P 2018 Science 360 1218
[4] Jiang S W, Li L Z, Wang Z F, Shan J, Mak K F 2019 Nat. Electron. 2 159
[5] Lin X Y, Yang W, Wang K L, Zhao W S 2019 Nat. Electron. 2 274
[6] Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554
[7] Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M-H, Batzill M 2018 Nat. Nanotechnol.13 289
[8] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature. 563 94
[9] Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, Gao C L 2019 Science 366 983
[10] Jiang H N, Zhang P, Wang X G, Gong Y J 2021 Nano Res. 14 1789
[11] Wang H, Wen Y, Zhao X X, Cheng R Q, Yin L, Zhai B X, Jiang J, Li Z W, Liu C S, Wu F C, He J 2023 Adv. Funct. Mater. 35 2211388
[12] Lu S H, Zhou Q H, Guo Y L, Zhang Y H, Wu Y L, Wang J L 2020 Adv. Mater.32 2002658
[13] Guo Y L, Wang B, Zhang X W, Yuan S J, Ma L, Wang J L 2020 Infomat 2 639
[14] Eremeev S V, Otrokov M M, Chulkov E V 2018 Nano lett. 18 6521
[15] Hu T, Zhao G D, Gao H, Wu Y B, Hong J S, Stroppa A, Ren W 2020 Phys. Rev. B 101 125401
[16] Yang S X, Chen Y J, Jiang C B 2021 InfoMat 3 397
[17] Abramchuk M, Jaszewski S, Metz K R, Osterhoudt G B, Wang Y P, Burch K S, Tafti F 2018 Adv. Mater. 30 1801325.
[18] Duan H L, Guo P, Wang C, Tan H, Hu W, Yan W S, Ma C, Cai L, Song L, Zhang W H, Sun Z H, Wang L J, Zhao W B, Yin Y W, Li X G, Wei S Q 2019 Nat. Commum. 10 1584
[19] Zhou S S, Wang R Y, Han J B, Wang D L, Li H Q, Gan L, Zhai T Y 2018 Adv. Funct. Mater.29 1805880
[20] Chu J W, Zhang Y, Wen Y, Qiao R X, Wu C C, He P, Yin L, Cheng R Q, Wang F, Wang Z X, Xiong J, Li Y R, He J 2019 Nano Lett. 19 2154
[21] Cui F F, Zhao X X, Xu J J, Tang B, Shang Q Y, Shi J P, Huan Y H, Liao J H, Chen Q, Hou Y L, Zhang Q, Pennycook S J, Zhang Y F 2019 Adv. Mater. 32 1905896
[22] Zhou X Y, Liu C, Song L T, Zhang H M, Huang Z W, He C L, Li B L, Lin X H, Zhang Z H, Shi S, Shen D Y, Song R, Li J, Liu X Q, Zou X M, Huang L, Liao L, Duan X D, Li B 2022 Sci. China-Phys. Mech. Astron. 65 276811
[23] Yang R L, Zhang Y Y 2023 Journal of Materials Engineering 51 162 (in Chinese) [杨瑞龙,张钰樱 2023 材料工程 51 162]
[24] Guo Y Q, Deng H T, Sun X, Li X L, Zhao J Y, Wu J C, Chu W S, Zhang S J, Pan H B, Zheng X S, Wu X J, Jin C Q, Wu C Z, Xie Y 2017 Adv. Mater. 29 1700715
计量
- 文章访问数: 1678
- PDF下载量: 50
- 被引次数: 0