搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高转换效率腔内倍频外腔面发射蓝光激光器

伍亚东 朱仁江 晏日 彭雪芳 王涛 蒋丽丹 佟存柱 宋晏蓉 张鹏

引用本文:
Citation:

高转换效率腔内倍频外腔面发射蓝光激光器

伍亚东, 朱仁江, 晏日, 彭雪芳, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏

Intracavity frequency-doubled external-cavity surface-emitting blue laser with high conversion efficiency

Wu Ya-Dong, Zhu Ren-Jiang, Yan Ri, Peng Xue-Fang, Wang Tao, Jiang Li-Dan, Tong Cun-Zhu, Song Yan-Rong, Zhang Peng
PDF
HTML
导出引用
  • 高功率高光束质量的蓝色激光在激光显示与照明、水下通信和成像、有色金属加工等许多领域具有广泛应用前景. 本文利用增益芯片底部的高反镜分布布拉格反射镜、折叠镜以及后端反射镜构成V型谐振腔, 通过腔内插入非线性晶体LBO, 获得了高转换效率的高功率、高光束质量蓝光输出. 实验研究了非线性晶体的长度、基频激光的线宽、倍频走离角的补偿等不同因素对外腔面发射激光器腔内倍频蓝光输出功率的影响. 在LBO的Ⅰ类相位匹配条件下, 当晶体长度为5 mm, 所用双折射滤波片厚度为1 mm时, 获得超过6 W的491 nm波长蓝光输出, xy方向的光束质量M2因子均为1.08, 倍频转换效率为63%.
    Blue laser with high power and high beam quality has many applications such as in laser display, underwater communication and imaging, and non-ferrous metal processing. Optically pumped external-cavity surface-emitting laser combines the advantages of both surface-emitting semiconductor lasers and solid-state disk lasers, and can produce high output power and good beam quality simultaneously. Its high intracavity circulating power is more conducive to intracavity frequency doubling, achieving high-power and high beam quality blue light through fundamental laser in the near-infrared waveband. This paper reports an efficient intracavity frequency doubled 490 nm high power blue light by using a 980 nm fundamental laser in an external-cavity surface-emitting laser. The V-type resonant cavity is formed by the high reflectivity distributed Bragg reflector (DBR) at the bottom of gain chip, a folded flat concave mirror (high reflectivity coated for 980 nm and anti-reflectivity coated for 490 nm), and a flat concave end mirror (high reflectivity coated for 980 nm and 490 nm). By inserting a nonlinear crystal LBO into the cavity at the beam waist formed by the folded mirror and end mirror, and employing a birefringent filter (BRF) to polarize the fundamental laser and narrow the linewidth of the laser, a high power and high beam quality blue laser with high conversion efficiency is obtained. The effects of different factors including the length of nonlinear crystal, the linewidth of fundamental laser, and the compensation of walk off angle on the output power of the blue laser are studied experimentally. The length of the nonlinear crystal is optimized based on the size of the fundamental laser beam waist at the position of the crystal in the resonant cavity. Under the type-I phase matching condition of LBO, over 6 W output power at 491 nm wavelength is obtained when the crystal length is 5 mm and the BRF thickness is 1 mm. The beam quality M2 factor in the x direction and the y direction are both 1.08, and the conversion efficiency of frequency doubling is 63%. The experimental results also show that symmetrically placed nonlinear crystals can compensate for the walk-off angle during frequency doubling to a certain extent, thereby clearly improving the conversion efficiency of the frequency doubled blue laser.
      通信作者: 朱仁江, 20131121@cqnu.edu.cn ; 张鹏, zhangpeng2010@cqnu.edu.cn
    • 基金项目: 在渝本科高校与中国科学院所属院所合作项目 (批准号: HZ2021007)、重庆市教委科技计划重大项目(批准号: KJZD-M201900502)、重庆市教委科技计划 (批准号: KJQN202200557)、国家自然科学基金 (批准号: 61975003, 61790584, 62025506)和重庆师范大学基金项目(批准号: 23XLB003)资助的课题.
      Corresponding author: Zhu Ren-Jiang, 20131121@cqnu.edu.cn ; Zhang Peng, zhangpeng2010@cqnu.edu.cn
    • Funds: Project supported by the Cooperation Project between Chongqing Local Universities and Institutions of Chinese Academy of Sciences, Chongqing Municipal Education Commission (Grant No. HZ2021007), the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant No. KJZD-M201900502), the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant No. KJQN202200557), the National Natural Science Foundation of China (Grant Nos. 61975003, 61790584, 62025506), and the Chongqing Normal University Foundation, China (Grant No. 23 XLB003).
    [1]

    高伟男, 许祖彦, 毕勇, 袁园 2020 中国工程科学 22 85Google Scholar

    Gao W N, Xu Z Y, Bi Y, Yuan Y 2020 Strategic Study of CAE 22 85Google Scholar

    [2]

    马剑, 朱小磊, 陆婷婷, 马浩达 2022 光学学报 42 1714002

    Ma J, Zhu X L, Lu T T, Ma H D 2022 Acta Opt. Sin. 42 1714002

    [3]

    杨永强, 温娅玲, 王迪, 周恒, 牛增强, 卢同杰 2022 焊接学报 43 80Google Scholar

    Yang Y Q, Wen Y L, Wang D, Zhou H, Niu Z Q, Lu T J 2022 T. China Welding Instit. 43 80Google Scholar

    [4]

    顾波 2021 金属加工(热加工) 834 1

    Gu B 2021 MW Metal Forming 834 1

    [5]

    王洪泽, 吴一, 王浩伟 2021 中国有色金属学报 31 3059Google Scholar

    Wang H Z, Wu Y, Wang H W 2021 Chin. J. Nonferrous Metals 31 3059Google Scholar

    [6]

    高静, 于欣, 张文平, 彭江波, 于俊华, 王月珠 2007 光学技术 33 430Google Scholar

    Gao J, Yu X, Zhang W P, Peng J B, Yu J H, Wang Y Z 2007 Opt. Tech. 33 430Google Scholar

    [7]

    杨天瑞, 徐欢, 梅洋, 许荣彬, 张保平, 应磊莹 2020 中国激光 47 151

    Yang T R, Xu H, Mei Y, Xu R B, Zhang B P, Ying L Y 2020 Chin. J. Lasers 47 151

    [8]

    王玉坤, 郑重明, 龙浩, 梅洋, 张保平 2022 光子学报 51 39

    Wang Y K, Zhen Z M, Long H, Mei Y, Zhang B P 2022 Acta Photon. Sin. 51 39

    [9]

    王渴, 韩金樑, 梁金华, 单肖楠, 王立军 2023 中国激光 50 62

    Wang K, Han J L, Liang J H, Shan X N, Wang L J 2023 Chin. J. Lasers 50 62

    [10]

    Kozlovsky W J, Lenth W, Latta E E, Moser A, Bona G L 1990 Appl. Phys. Lett. 56 2291Google Scholar

    [11]

    Ye Z, Lou Q, Dong J, Wei Y, Lin L 2005 Opt. Lett. 30 73Google Scholar

    [12]

    董景星, 楼祺洪, 成序三, 凌磊, 魏运荣, 叶震寰, 周军 2006 光学学报 26 567Google Scholar

    Dong J X, Lou Q H, Cheng X S, Ling L, Wei Y R, Ye Z H, Zhou J 2006 Acta Opt. Sin. 26 567Google Scholar

    [13]

    王旭葆, 丁鹏, 左铁钏 2008 红外与激光工程 S3 48

    Wang X B, Ding P, Zuo T X 2008 Infrared Laser Eng. S3 48

    [14]

    Rahimi-Iman A 2016 J. Optics-UK 18 093003Google Scholar

    [15]

    Guina M, Rantamäki A, Härkönen A 2017 J. Phy. D Appl. Phys. 50 383001Google Scholar

    [16]

    Raymond T D, Alford W J, Crawford M H, Allerman A A 1999 Opt. Lett. 24 1127Google Scholar

    [17]

    Fan L, Hsu T C, Fallahi M, Murray J T, Bedford R, Kaneda Y, Stolz W 2006 Appl. Phys. Lett. 88 251117Google Scholar

    [18]

    Kim G B, Kim J Y, Lee J, Yoo J, Kim K S, Lee S M, Park Y 2006 Appl. Phys. Lett. 89 181106Google Scholar

    [19]

    Tinsley J N, Bandarupally S, Penttinen J P, Manzoor S, Ranta S, Salvi L, Poli N 2021 Opt. Express 29 25462Google Scholar

    [20]

    Hein A, Demaria F, Kern A, Menzel S, Rinaldi F, Rösch R, Unger P 2010 IEEE Photonic. Tech. L. 23 179

    [21]

    Casel O, Woll D, Tremont M A, Fuchs H, Wallenstein R, Gerster E, Weyers M 2005 Appl. Phys. B-Lasers O. 81 443Google Scholar

    [22]

    Gray A C, Woods J R, Carpenter L G, Kahle H, Berry S A, Tropper A C, Gawith C B 2020 Appl. Opt. 59 4921Google Scholar

    [23]

    Chilla J L, Butterworth S D, Zeitschel A, Charles J P, Caprara A L, Reed M K, Spinelli L 2004 Solid State Lasers XIII:Technology and Devices 5332 143Google Scholar

    [24]

    Boyd G D, Ashkin A, Dziedzic J M, Kleinman D A 1965 Phys. Rev. 137 A1305Google Scholar

    [25]

    Zondy J J, Bonnin C, Lupinski D 2003 J. Opt. Soc. Am. B 20 1695Google Scholar

  • 图 1  (a)倍频蓝光VECSEL的光路图及增益芯片的外延结构简图; (b)倍频蓝光的实物装置图

    Fig. 1.  (a) Schematics of the frequency-doubled blue VECSEL and the sketch of the epitaxial structure of the gain chip; (b) setup of the frequency-doubled blue VECSEL.

    图 2  DBR的反射谱及其荧光特性图

    Fig. 2.  Reflectivity of DBR and the photoluminescence of the gain chip.

    图 3  不同LBO长度对应倍频激光输出功率曲线图. 左上插图为蓝光光束质量M2因子, 右下插图是倍频蓝光的光谱

    Fig. 3.  Blue output powers of the lasers with different LBO length. The insert in top left is the M2 factor and the insert in low right is the spectrum of the blue laser.

    图 4  不同BRF厚度对应的倍频蓝光输出功率曲线图. 插图为不同厚度BRF对应的基频激光线宽

    Fig. 4.  Blue output powers of the lasers with different BRF thickness. The insert is the linewidth of the fundamental laser with different BRF thickness.

    图 5  10 mm LBO与5 mm + 5 mm LBO对应的倍频蓝光输出功率曲线图. 插图为走离角及其补偿示意图

    Fig. 5.  Blue output powers of the lasers with 10 mm length LBO and 5 mm + 5 mm length LBO. The insert is the schematics of walk-off angle and its compensation.

    图 6  基频VECSEL与倍频蓝光VECSEL功率对比曲线

    Fig. 6.  Output powers of the fundamental VECSEL versus the frequency doubled VECSEL.

  • [1]

    高伟男, 许祖彦, 毕勇, 袁园 2020 中国工程科学 22 85Google Scholar

    Gao W N, Xu Z Y, Bi Y, Yuan Y 2020 Strategic Study of CAE 22 85Google Scholar

    [2]

    马剑, 朱小磊, 陆婷婷, 马浩达 2022 光学学报 42 1714002

    Ma J, Zhu X L, Lu T T, Ma H D 2022 Acta Opt. Sin. 42 1714002

    [3]

    杨永强, 温娅玲, 王迪, 周恒, 牛增强, 卢同杰 2022 焊接学报 43 80Google Scholar

    Yang Y Q, Wen Y L, Wang D, Zhou H, Niu Z Q, Lu T J 2022 T. China Welding Instit. 43 80Google Scholar

    [4]

    顾波 2021 金属加工(热加工) 834 1

    Gu B 2021 MW Metal Forming 834 1

    [5]

    王洪泽, 吴一, 王浩伟 2021 中国有色金属学报 31 3059Google Scholar

    Wang H Z, Wu Y, Wang H W 2021 Chin. J. Nonferrous Metals 31 3059Google Scholar

    [6]

    高静, 于欣, 张文平, 彭江波, 于俊华, 王月珠 2007 光学技术 33 430Google Scholar

    Gao J, Yu X, Zhang W P, Peng J B, Yu J H, Wang Y Z 2007 Opt. Tech. 33 430Google Scholar

    [7]

    杨天瑞, 徐欢, 梅洋, 许荣彬, 张保平, 应磊莹 2020 中国激光 47 151

    Yang T R, Xu H, Mei Y, Xu R B, Zhang B P, Ying L Y 2020 Chin. J. Lasers 47 151

    [8]

    王玉坤, 郑重明, 龙浩, 梅洋, 张保平 2022 光子学报 51 39

    Wang Y K, Zhen Z M, Long H, Mei Y, Zhang B P 2022 Acta Photon. Sin. 51 39

    [9]

    王渴, 韩金樑, 梁金华, 单肖楠, 王立军 2023 中国激光 50 62

    Wang K, Han J L, Liang J H, Shan X N, Wang L J 2023 Chin. J. Lasers 50 62

    [10]

    Kozlovsky W J, Lenth W, Latta E E, Moser A, Bona G L 1990 Appl. Phys. Lett. 56 2291Google Scholar

    [11]

    Ye Z, Lou Q, Dong J, Wei Y, Lin L 2005 Opt. Lett. 30 73Google Scholar

    [12]

    董景星, 楼祺洪, 成序三, 凌磊, 魏运荣, 叶震寰, 周军 2006 光学学报 26 567Google Scholar

    Dong J X, Lou Q H, Cheng X S, Ling L, Wei Y R, Ye Z H, Zhou J 2006 Acta Opt. Sin. 26 567Google Scholar

    [13]

    王旭葆, 丁鹏, 左铁钏 2008 红外与激光工程 S3 48

    Wang X B, Ding P, Zuo T X 2008 Infrared Laser Eng. S3 48

    [14]

    Rahimi-Iman A 2016 J. Optics-UK 18 093003Google Scholar

    [15]

    Guina M, Rantamäki A, Härkönen A 2017 J. Phy. D Appl. Phys. 50 383001Google Scholar

    [16]

    Raymond T D, Alford W J, Crawford M H, Allerman A A 1999 Opt. Lett. 24 1127Google Scholar

    [17]

    Fan L, Hsu T C, Fallahi M, Murray J T, Bedford R, Kaneda Y, Stolz W 2006 Appl. Phys. Lett. 88 251117Google Scholar

    [18]

    Kim G B, Kim J Y, Lee J, Yoo J, Kim K S, Lee S M, Park Y 2006 Appl. Phys. Lett. 89 181106Google Scholar

    [19]

    Tinsley J N, Bandarupally S, Penttinen J P, Manzoor S, Ranta S, Salvi L, Poli N 2021 Opt. Express 29 25462Google Scholar

    [20]

    Hein A, Demaria F, Kern A, Menzel S, Rinaldi F, Rösch R, Unger P 2010 IEEE Photonic. Tech. L. 23 179

    [21]

    Casel O, Woll D, Tremont M A, Fuchs H, Wallenstein R, Gerster E, Weyers M 2005 Appl. Phys. B-Lasers O. 81 443Google Scholar

    [22]

    Gray A C, Woods J R, Carpenter L G, Kahle H, Berry S A, Tropper A C, Gawith C B 2020 Appl. Opt. 59 4921Google Scholar

    [23]

    Chilla J L, Butterworth S D, Zeitschel A, Charles J P, Caprara A L, Reed M K, Spinelli L 2004 Solid State Lasers XIII:Technology and Devices 5332 143Google Scholar

    [24]

    Boyd G D, Ashkin A, Dziedzic J M, Kleinman D A 1965 Phys. Rev. 137 A1305Google Scholar

    [25]

    Zondy J J, Bonnin C, Lupinski D 2003 J. Opt. Soc. Am. B 20 1695Google Scholar

  • [1] 成佳, 伍亚东, 晏日, 彭雪芳, 朱仁江, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 基于外腔面发射激光器腔内三倍频的可调谐紫外激光器. 物理学报, 2024, 73(8): 084202. doi: 10.7498/aps.73.20231923
    [2] 王志鹏, 关宝璐, 张峰, 杨嘉炜. 内腔亚波长光栅液晶可调谐垂直腔面发射激光器. 物理学报, 2021, 70(22): 224208. doi: 10.7498/aps.70.20210957
    [3] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [4] 秦璐, 任杰, 许兴胜. 垂直腔面发射激光器低温光电特性. 物理学报, 2019, 68(19): 194203. doi: 10.7498/aps.68.20190427
    [5] 邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉. 双波长外腔面发射激光器. 物理学报, 2019, 68(11): 114204. doi: 10.7498/aps.68.20182261
    [6] 刘庆喜, 潘炜, 张力月, 李念强, 阎娟. 基于外光注入互耦合垂直腔面发射激光器的混沌随机特性研究. 物理学报, 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [7] 王小发, 李骏. 短外腔偏振旋转光反馈下1550 nm垂直腔面发射激光器的动力学特性研究. 物理学报, 2014, 63(1): 014203. doi: 10.7498/aps.63.014203
    [8] 张建忠, 王安帮, 张明江, 李晓春, 王云才. 反馈相位随机调制消除混沌半导体激光器的外腔长信息. 物理学报, 2011, 60(9): 094207. doi: 10.7498/aps.60.094207
    [9] 马宝田, 吴逢铁, 马亮. 非稳腔主动式直接获取纳秒近似无衍射贝塞尔绿光. 物理学报, 2010, 59(9): 6213-6218. doi: 10.7498/aps.59.6213
    [10] 劳燕锋, 曹春芳, 吴惠桢, 曹萌, 龚谦. 亚毫安阈值的1.3μm垂直腔面发射激光器. 物理学报, 2009, 58(3): 1954-1958. doi: 10.7498/aps.58.1954
    [11] 张玉萍, 张会云, 钟凯, 王鹏, 李喜福, 姚建铨. 高效高稳定高光束质量声光调Q绿光激光器的研究. 物理学报, 2009, 58(5): 3193-3197. doi: 10.7498/aps.58.3193
    [12] 张玉萍, 张会云, 何志红, 王鹏, 李喜福, 姚建铨. 36 W侧面抽运腔内倍频Nd:YAG/KTP连续绿光激光器. 物理学报, 2009, 58(7): 4647-4651. doi: 10.7498/aps.58.4647
    [13] 宗楠, 崔大复, 李成明, 彭钦军, 许祖彦, 秦莉, 李特, 宁永强, 晏长岭, 王立军. 光抽运垂直扩展腔面发射激光器腔内倍频理论研究. 物理学报, 2009, 58(6): 3903-3908. doi: 10.7498/aps.58.3903
    [14] 杨 浩, 郭 霞, 关宝璐, 王同喜, 沈光地. 注入电流对垂直腔面发射激光器横模特性的影响. 物理学报, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [15] 关宝璐, 郭 霞, 杨 浩, 梁 庭, 顾晓玲, 郭 晶, 邓 军, 高 国, 沈光地. 宽调谐范围垂直腔面发射激光器特性分析及设计. 物理学报, 2007, 56(8): 4585-4589. doi: 10.7498/aps.56.4585
    [16] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [17] 高建霞, 宋国峰, 郭宝山, 甘巧强, 陈良惠. 表面等离子体调制的纳米孔径垂直腔面发射激光器. 物理学报, 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
    [18] 陈 敏, 郭 霞, 关宝璐, 邓 军, 董立闽, 沈光地. AlInGaAs/AlGaAs垂直腔面发射激光器温度特性的对比研究. 物理学报, 2006, 55(11): 5842-5847. doi: 10.7498/aps.55.5842
    [19] 马 晶, 章若冰, 张伟力, 王清月. BBOⅠ类相位匹配光参量放大中群速失配的补偿. 物理学报, 2005, 54(6): 2745-2750. doi: 10.7498/aps.54.2745
    [20] 赵红东, 康志龙, 王胜利, 陈国鹰, 张以谟. 高速调制响应垂直腔面发射激光器中的微腔效应. 物理学报, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
计量
  • 文章访问数:  930
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-06
  • 修回日期:  2023-11-21
  • 上网日期:  2023-11-30
  • 刊出日期:  2024-01-05

/

返回文章
返回