-
强耦合振子可用于微弱脉冲信号的检测和波形恢复, 但其对微弱脉冲信号的检测频率会受到系统内置频率的限制. 在系统内置频率固定的情况下, 系统只能对一定频率范围内的脉冲信号进行有效检测和波形恢复, 在检测更高频率的脉冲信号时会出现波形失真. 本文分析了耦合振子内置频率和微弱脉冲信号检测频率之间的关系, 提出两种改进强耦合振子结构以扩展微弱脉冲信号的频率检测范围. 通过引入非线性恢复力耦合项, 非线性恢复力强耦合振子可以有效保留信号的高频分量, 在更高频率的脉冲信号输入时也能较好地保留信号特征. 双振子强耦合系统通过引入Van der Pol-Duffing振子, 加强了系统内部结构的稳定性, 同样达到了扩展脉冲信号频率检测范围的效果. 此外, 基于变迭代步长和混沌检测的频率相关性, 提出了一个未知频率脉冲信号检测方法, 以改变迭代步长的方法代替改变系统内置频率来进行频率扫描, 并且利用混沌检测的频率相关性, 将接收信号和恢复信号的相关系数和纯噪声输入情况下的相关系数进行对比, 根据两个相关系数之间的明显差异可以有效检测出脉冲信号. 通过仿真实验进行验证, 所提方法可以有效检测出未知频率的脉冲信号, 并且所提的改进强耦合振子结构相对于强耦合振子有较大的性能提升.
-
关键词:
- 强耦合 /
- 非线性恢复力强耦合振子 /
- 双振子强耦合系统 /
- 微弱脉冲 /
- 瞬态脉冲
A strongly coupled oscillator can be used to detect weak pulse signals and recover waveforms, but its detection frequency of weak pulse signal is limited by the system’s built-in frequency. With a fixed built-in frequency, the system can only effectively detect and recover pulse signals in a certain frequency range, and waveform distortion occurs when pulse signals of higher frequencies are detected. In this work, the relationship between the built-in frequency of the coupled oscillator and the frequency detection range of weak pulse signal is analyzed, and two kinds of improved strongly coupled oscillator structures are proposed to extend the frequency detection range of weak pulse signals. By introducing the nonlinear restoring force coupling term, the nonlinear restoring force strongly coupled oscillator can effectively retain the high-frequency component of the signal, and can also better retain the signal characteristics when the pulse signal is input at a higher frequency. By introducing the Van der Pol-Duffing oscillator, the two-oscillator strong coupling system strengthens the stability of the internal structure of the system, and also achieves the effect of expanding the frequency detection range of the pulse signal. In addition, based on the variable iteration step size and frequency correlation of chaos detection, a method of detecting unknown frequency pulse signals is proposed. Instead of changing the built-in frequency of the system for frequency scanning, the method of changing the iteration step size is used. And using the frequency correlation of chaos detection, the correlation coefficient of the received signal and the recovered signal is compared with the correlation coefficient of the pure noise input case, then the pulse signals can be effectively detected based on the apparent difference between the two correlation coefficients. It is verified by simulation experiments that the proposed method can effectively detect the pulse signal of unknown frequency, and the proposed improved strong coupling oscillator has a greater performance improvement than that of the strong coupling oscillator.-
Keywords:
- strong coupling /
- nonlinear restoring force strongly coupled oscillator /
- two-oscillator strongly coupled system /
- weak pulse /
- transient pulse
[1] Su L Y 2010 Comput. Math. Appl. 59 737Google Scholar
[2] 路鹏, 李月 2005 电子学报 33 527Google Scholar
Lu P, Li Y 2005 Acta Electron. Sin. 33 527Google Scholar
[3] Su L Y, Ma Y J, Li J J 2012 Chin. Phys. B 21 020508Google Scholar
[4] Li M P, Xu X M, Yang B C, Ding J F 2015 Chin. Phys. B 24 060504Google Scholar
[5] 王丹, 李安艺, 杨艳娟 2019 计算机应用 39 2652Google Scholar
Wang D, Li A Y, Yang Y J 2019 J. Comput. Appl. 39 2652Google Scholar
[6] 刘青, 常丁戈, 邓军波 2020 电工技术学报 35 3551Google Scholar
Liu Q, Chang D G, Deng J B 2020 Trans. China Electrotechn. Soc. 35 3551Google Scholar
[7] 刘欣宇, 杨苏辉, 廖英琦, 林学彤 2021 物理学报 70 184205Google Scholar
Liu X Y, Yang S H, Liao Y Q, Lin X T 2021 Acta Phys. Sin. 70 184205Google Scholar
[8] 韩庆阳, 王晓东, 李丙玉, 周鹏骥 2015 电子与信息学报 37 1384Google Scholar
Han Q Y, Wang X D, Li B Y, Zhou P G 2015 J. Electr. Inf. Technol. 37 1384Google Scholar
[9] 赵雄文, 郭春霞, 李景春 2016 电子与信息学报 38 674Google Scholar
Zhao X W, Guo C X, Li J C 2016 J. Electr. Inf. Technol. 38 674Google Scholar
[10] 王永生, 姜文志, 赵建军, 范洪达 2008 物理学报 2053Google Scholar
Wang Y S, Jiang W Z, Zhao J J, Fan H D 2008 Acta Phys. Sin. 2053Google Scholar
[11] 苏理云, 孙唤唤, 王杰, 阳黎明 2017 物理学报 64 090503Google Scholar
Su L Y, Sun H H, Wang J, Yang L M 2017 Acta Phys. Sin. 64 090503Google Scholar
[12] 苏理云, 孙唤唤, 李晨龙 2017 电子学报 45 837Google Scholar
Su L Y, Sun H H, Li C L 2017 Acta Electron. Sin. 45 837Google Scholar
[13] 王慧武, 丛超 2016 电子学报 44 1450Google Scholar
Wang H W, Cong C 2016 Acta Electron. Sin. 44 1450Google Scholar
[14] Birx D L, Pipenberg S J 1992 International Joint Conference on Neural Networks (Vol. 2) Baltimore, USA, June 07–11, 1992 p881
[15] Yuan Y, Li Y, Mandic D P, Yang B J 2009 Chin. Phys. B 18 958Google Scholar
[16] 吴勇峰, 张世平, 孙金玮, Peter Rolfe 2011 物理学报 60 020511Google Scholar
Wu Y F, Zhang S P, Sun J W, Rolfe P 2011 Acta Phys. Sin. 60 020511Google Scholar
[17] 曾喆昭, 周勇, 胡凯 2015 物理学报 64 070505Google Scholar
Zeng Z Z, Zhou Y, Hu K 2015 Acta Phys. Sin. 64 070505Google Scholar
[18] 张悦, 刘尚合, 胡小锋, 樊高辉 2016 高电压技术 42 2009Google Scholar
Zhang Y, Liu S H, Hu X F, Fan G H 2016 High Voltage Eng. 42 2009Google Scholar
[19] 曹保锋, 李鹏, 李小强, 张雪芹, 宁王师, 梁睿, 李欣, 胡淼, 郑毅 2019 物理学报 68 080501Google Scholar
Cao B F, Li P, Li X Q, Zhang X Q, Ning W S, Liang R, Li X, Hu M, Zheng Y 2019 Acta Phys. Sin. 68 080501Google Scholar
[20] Luo W, Cui Y L 2020 IEEE Access 8 86554Google Scholar
[21] Li G H, Hou Y M, Yang H 2022 Alex. Eng. J. 61 2859Google Scholar
-
图 1 三角脉冲检测示意图 (a)原始三角脉冲及加噪三角脉冲; (b)系统恢复的三角脉冲波形; (c)系统两个振子的时域输出; (d)系统两个振子的相轨图
Fig. 1. Triangular pulse detection diagram: (a) Original delta pulse and noise-added delta pulse; (b) delta pulse waveform after system recovery; (c) time domain output of two oscillators of the system; (d) phase track diagram of two oscillators of the system.
-
[1] Su L Y 2010 Comput. Math. Appl. 59 737Google Scholar
[2] 路鹏, 李月 2005 电子学报 33 527Google Scholar
Lu P, Li Y 2005 Acta Electron. Sin. 33 527Google Scholar
[3] Su L Y, Ma Y J, Li J J 2012 Chin. Phys. B 21 020508Google Scholar
[4] Li M P, Xu X M, Yang B C, Ding J F 2015 Chin. Phys. B 24 060504Google Scholar
[5] 王丹, 李安艺, 杨艳娟 2019 计算机应用 39 2652Google Scholar
Wang D, Li A Y, Yang Y J 2019 J. Comput. Appl. 39 2652Google Scholar
[6] 刘青, 常丁戈, 邓军波 2020 电工技术学报 35 3551Google Scholar
Liu Q, Chang D G, Deng J B 2020 Trans. China Electrotechn. Soc. 35 3551Google Scholar
[7] 刘欣宇, 杨苏辉, 廖英琦, 林学彤 2021 物理学报 70 184205Google Scholar
Liu X Y, Yang S H, Liao Y Q, Lin X T 2021 Acta Phys. Sin. 70 184205Google Scholar
[8] 韩庆阳, 王晓东, 李丙玉, 周鹏骥 2015 电子与信息学报 37 1384Google Scholar
Han Q Y, Wang X D, Li B Y, Zhou P G 2015 J. Electr. Inf. Technol. 37 1384Google Scholar
[9] 赵雄文, 郭春霞, 李景春 2016 电子与信息学报 38 674Google Scholar
Zhao X W, Guo C X, Li J C 2016 J. Electr. Inf. Technol. 38 674Google Scholar
[10] 王永生, 姜文志, 赵建军, 范洪达 2008 物理学报 2053Google Scholar
Wang Y S, Jiang W Z, Zhao J J, Fan H D 2008 Acta Phys. Sin. 2053Google Scholar
[11] 苏理云, 孙唤唤, 王杰, 阳黎明 2017 物理学报 64 090503Google Scholar
Su L Y, Sun H H, Wang J, Yang L M 2017 Acta Phys. Sin. 64 090503Google Scholar
[12] 苏理云, 孙唤唤, 李晨龙 2017 电子学报 45 837Google Scholar
Su L Y, Sun H H, Li C L 2017 Acta Electron. Sin. 45 837Google Scholar
[13] 王慧武, 丛超 2016 电子学报 44 1450Google Scholar
Wang H W, Cong C 2016 Acta Electron. Sin. 44 1450Google Scholar
[14] Birx D L, Pipenberg S J 1992 International Joint Conference on Neural Networks (Vol. 2) Baltimore, USA, June 07–11, 1992 p881
[15] Yuan Y, Li Y, Mandic D P, Yang B J 2009 Chin. Phys. B 18 958Google Scholar
[16] 吴勇峰, 张世平, 孙金玮, Peter Rolfe 2011 物理学报 60 020511Google Scholar
Wu Y F, Zhang S P, Sun J W, Rolfe P 2011 Acta Phys. Sin. 60 020511Google Scholar
[17] 曾喆昭, 周勇, 胡凯 2015 物理学报 64 070505Google Scholar
Zeng Z Z, Zhou Y, Hu K 2015 Acta Phys. Sin. 64 070505Google Scholar
[18] 张悦, 刘尚合, 胡小锋, 樊高辉 2016 高电压技术 42 2009Google Scholar
Zhang Y, Liu S H, Hu X F, Fan G H 2016 High Voltage Eng. 42 2009Google Scholar
[19] 曹保锋, 李鹏, 李小强, 张雪芹, 宁王师, 梁睿, 李欣, 胡淼, 郑毅 2019 物理学报 68 080501Google Scholar
Cao B F, Li P, Li X Q, Zhang X Q, Ning W S, Liang R, Li X, Hu M, Zheng Y 2019 Acta Phys. Sin. 68 080501Google Scholar
[20] Luo W, Cui Y L 2020 IEEE Access 8 86554Google Scholar
[21] Li G H, Hou Y M, Yang H 2022 Alex. Eng. J. 61 2859Google Scholar
计量
- 文章访问数: 2030
- PDF下载量: 54
- 被引次数: 0