搜索

x
中国物理学会期刊

二元混合物在液体层上发生马兰戈尼爆裂的研究

CSTR: 32037.14.aps.73.20231364

Study on Marangoni explosion of binary mixtures in liquid layer

CSTR: 32037.14.aps.73.20231364
PDF
HTML
导出引用
  • 由于马兰戈尼效应, 液滴在液体层表面自发铺展成薄膜的物理过程, 在成膜技术、涂层工艺、以及纳米器件的制作等领域具有广泛的应用, 但是铺展后液膜自发碎裂成小液滴的现象也被广泛观察到, 这种现象限制了马兰戈尼效应应用的发展. 本文基于以往的实验观察对液膜的碎裂机制进行完备的解释, 并通过实验进行验证, 指出了液滴薄膜中心与边缘蒸发速率的差异引起的马兰戈尼流动对液膜边界产生的微扰, 使得液滴铺展到最大时边缘生长出指状液柱. 此外, 根据微扰模型推导出边界失稳的临界波长和最大波长的表达式, 基于Plateau-Rayleigh不稳定性解释了指状液柱碎裂的原因. 建立同心圆柱壳液柱模型简化计算, 预测了不同黏度比的液滴在液体层上铺展为薄膜的浓度范围和发生马兰戈尼爆裂的位置区间, 并通过实验验证了不同醇溶液发生马兰戈尼爆裂的浓度范围和位置区间. 该理论解释将在成膜技术、涂层工艺等领域提供更加精细的理论指导; 特别地, 本文提出的同心圆柱壳简化模型为化工领域微量反应和纳米颗粒制备等研究领域中的一些技术难题提供新的解决思路.

     

    In this work, the process of forming micro-droplets due to instability and fragmentation after short chain alcohol solution spreads on the surface of oil layers is studied. Based on the free energy theory of the liquid-liquid interface, the relationship between the binary mixtures spreading on the surface of the liquid layer is derived, and the concentration range of short chain alcohol solution spreading as a thin film on the surface of the oil layer is calculated from the Hiskovsky formula. The Malangoni flow caused by the difference in evaporation rate between the center and edge of the droplet film perturbs the boundary of the liquid film, causing finger-shaped liquid columns to grow at the edge when the droplet spreads to its maximum. In this work, the expression for the critical wavelength and maximum wavelength of boundary instability are derived based on the perturbation model, and the reason for finger shaped liquid column fragmentation is explained based on the Plateau Rayleigh instability. A concentric cylindrical shell liquid column model is established to simplify the calculation and predict the location range of “droplet explosion” of droplets with different viscosity ratios on the liquid layer. Through theoretical calculations and experimental verification, it is found that the alcohol solution fragmented into small droplets within a length range of 4.51–5.98 times the width of the liquid column. This study provides theoretical guidance for existing application fields such as film forming technology and coating technology. The hypotheses, assumptions, and simplified models preliminarily verified experimentally provide solutions for some technical difficulties in the research fields of micro reactions and nanoparticle preparation in chemical industry.

     

    目录

    /

    返回文章
    返回