搜索

x
中国物理学会期刊

HL-2A装置高βN双输运垒实验的集成分析

CSTR: 32037.14.aps.73.20231543

Integrated analysis of high-βN double transport barriers scenario on HL-2A

CSTR: 32037.14.aps.73.20231543
PDF
HTML
导出引用
  • HL-2A托卡马克装置在中性束加热条件下获得了稳定的归一化环向比压(\beta_\rmN)大于2.5的等离子体, 并且实现了瞬态\beta_\rmN = 3.05、归一化密度(n_\rme,l/n_\rme,G)\sim0.6、储能(W_\rmE)\sim46 kJ和高约束因子(H_98)\sim 1.65的高约束性能. 本文使用集成模拟平台OMFIT对\beta_\rmN = 2.83和\beta_\rmN = 3.05时刻的等离子体进行了集成模拟, 计算得到的W_\rmE, n_\rme,l/n_\rme,G, H_98\beta_\rmN等与实验参数基本一致, 并通过计算发现两种情况下自举电流份额(f_\rmBS)分别约达到 45\text% 46\text%. 此外, 还进一步分析了HL-2A装置形成离子温度内部输运垒(ITB)的原因: 快离子和\boldsymbol E\times\boldsymbol B剪切流使得芯部湍流输运被抑制, 改善了约束, 从而形成了离子温度ITB. 离子温度的ITB与H模边缘输运垒相互协同形成了高\beta_\rmN的等离子体.

     

    Tokamak is considered as the most promising experimental setup for achieving controllable nuclear fusion requirements. The parameter \beta_\rmN is an important parameter for tokamak devices: high \beta_\rmN benefits not only to plasma fusion but also to the enhancement of fusion reaction efficiency and the facilitation of steady-state operation. The HL-2A tokamak device has achieved stable plasma with \beta_\rmN exceeding than 2.5 through neutral beam injection heating, and transiently reached \beta_\rmN = 3.05, with a normalized density (n_\rme,l/n_\rme,G) of about 0.6, stored energy (W_\rmE) of around 46 kJ, and confinement improvement factor (H_98) of about 1.65. In this work, the integrated simulation platform OMFIT is used to analyze the plasma at \beta_\rmN = 2.83 and \beta_\rmN = 3.05, and the obtained W_ \rmE, n_\rme,l/n_\rme,G, H_98, \beta_\rmN, etc. are consistent with the experimental parameters. The bootstrap current (f_\rmBS) can reach to 45\text% and 46\text%. At both of the above moments, there are ion temperature double transport barrier (DTB) generated by the coexistence of internal transport barrier (ITB) and edge transport barrier (ETB), while high \beta_\rmN is usually related to DTB. In addition, the formation of ion temperature ITB in the HL-2A device is further analyzed, which is attributed to the dominance of turbulent transport in plasma transport, the suppression of turbulent transport in the core by fast ions and \boldsymbol E\times\boldsymbol B shear, and the resulting improvement in confinement, thereby ultimately leading to the formation of ion temperature ITB. The ITB of ion temperature and the ETB of H-mode synergistically contribute to the creation of high \beta_\rmN plasma.

     

    目录

    /

    返回文章
    返回