搜索

x
中国物理学会期刊

基于离子阱中离子晶体的热传导的研究进展

CSTR: 32037.14.aps.73.20231719

Research progress of heat transport in trapped-ion crystals

CSTR: 32037.14.aps.73.20231719
PDF
HTML
导出引用
  • 热传导现象是物理学中最重要的研究课题之一, 特别是近年来, 随着对单分子器件研究的不断深入, 人们越来越关注低维(一维和二维)微观系统的热传导问题. 离子阱中的离子晶体处于真空环境中, 没有与外部环境进行能量交换, 其晶体结构和温度可以通过电场和光场精确操控, 为研究低维晶体在经典或量子状态下的热传导提供了理想的实验平台. 本文综述了近年来离子晶体中热传导的理论研究, 包括一维、二维和三维模型中温度分布和稳态热流的计算方法, 以及在不同维度离子晶体构型下热流与温度分布的特性. 此外, 还讨论了无序度对离子晶体热导性的影响.

     

    Heat transport is one of the most important research topics in physics. Especially in recent years, with the in depth study on single-molecule devices, heat transport in low-dimensional (i.e. one- and two-dimensional) microsystems has received more and more attention. In the research of Fermi-Pasta-Ulam crystals and harmonic crystals, it is widely accepted that heat conduction in low-dimensional system does not follow Fourier’s law. Due to the lack of the equipment that can directly measure heat current, it has been proven to be a challenging task to carry out relevant experiments. Ion crystal in ion trap is located in vacuum and does not exchange energy with the external environment. The crystal structure and temperature can be accurately controlled by electric field and optical field, providing an ideal experimental platform for studying thermal conduction in low-dimensional crystals in classical state or quantum state. Herein we summarize the recent theoretical research on thermal conduction in ion crystals, including the methods of calculating temperature distribution and steady-state heat current in one-dimensional, two-dimensional, and three-dimensional models, as well as the characteristics of heat current and temperature distribution under different ion crystal configurations. Because the nonlinear effect caused by the imbalance among three dimensions hinders the heat transport, the heat current in ion crystal is largest in the linear configuration while smallest in the zig-zag configuration. In addition, we also introduce the influence of disorder on the thermal conductivity of ion crystal, including the influence on the heat current across various ion crystal configurations such as the linear, the zig-zag and the helical configuration. Notably, the susceptibility of ion crystal to disorder increases with crystal size increasing. Specifically, the zig-zag ion crystal configuration exhibits the largest susceptibility to disorder, whereas the linear configuration is least affected. Finally, we provide a concise overview of experimental studies of the heat conduction in low-dimensional systems. Examination of the heat conduction in ion crystal offers a valuable insight into various cooling techniques employed in ion trap systems, including sympathetic cooling, electromagnetically induced transparency cooling, and polarization gradient cooling. Just like macroscopic thermal diodes made by thermal metamaterials, it is possible that the microscopic thermal diodes can also be made in low-dimensional systems.

     

    目录

    /

    返回文章
    返回