搜索

x
中国物理学会期刊

第一性原理计算研究γ'-Co3(V, M) (M = Ti, Ta)相的结构稳定性、力学和热力学性质

CSTR: 32037.14.aps.73.20231755

First principles study on structural stability, mechanical, and thermodynamic properties of γ'-Co3(V, M) (M = Ti, Ta) phase

CSTR: 32037.14.aps.73.20231755
PDF
HTML
导出引用
  • 本文采用基于密度泛函理论的第一性原理计算方法并结合准谐德拜模型, 对Co基高温合金中γ'-Co3(V, M) (M = Ti, Ta)相的结构稳定性、热力学性质以及有限温度下的力学性质进行了系统的研究和讨论. 结果表明, γ'-Co3(V, M)相能以L12结构稳定存在, 其具有良好的抵抗变形的能力. γ'-Co3(V, Ti)相的热力学性能对温度的敏感性要大于γ'-Co3(V, Ta)相, 且γ'-Co3(V, M)相具有高温稳定性. 在有限温度下, 随着温度的升高, γ'-Co3(V, M)相由塑性材料向脆性材料过渡转变, 而且, 除了硬度性能有所提升外, γ'-Co3(V, M) (M = Ti, Ta)相的力学性能均呈下降趋势.

     

    This research focuses on enhancing Co-based high-temperature alloys by using γ' precipitate phases to address the structural metastability of γ'-Co3(Al, W). By adding Ti and Ta, the γ'-Co3(V, Ti) and γ'-Co3(V, Ta) of Co-V alloys are stabilized, surpassing the performance of traditional Co-Al-W alloys. Utilizing a 2×2×2 supercell model and density functional theory (DFT), we investigate these alloys' phase stabilities and mechanical, thermodynamic, and electronic properties. Our findings show that γ'-Co3(V, Ti) phase and γ'-Co3(V, Ta) phases are stable at 0 K, evidenced by negative formation enthalpies and stable phonon spectra. Mechanical analysis confirms their stabilities through elastic constants and detailed evaluations of properties such as bulk modulus, shear modulus, and Young’s modulus, revealing excellent resistance to deformation and ductility. The electronic structure analysis further distinguishes γ'-Co3(V, Ta) for superior electronic stability, which is attributed to its lower state density and deviation from “pseudogap” peaks. Thermodynamically, the quasi-harmonic Debye model highlights the γ'-Co3(V, Ti) phase’s temperature-sensitive thermal expansion coefficient, while γ'-Co3(V, Ta) maintains higher stability at elevated temperatures. As temperature rises, both phases show decreased resistance to deformation, though they maintain comparable heat resistance due to low-temperature dependency. These results suggest that Co-V-Ti alloy and Co-V-Ta alloy can maintain their γ' phase stability at higher temperatures, enhancing Co-based high-temperature alloys’ performances and phase stabilities. This progress is crucial for developing new Co-based superalloys, and is of great significance for their applications and performance optimization.

     

    目录

    /

    返回文章
    返回