搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最优控制理论的国产光抽运小铯钟频率控制算法

宋会杰 董绍武 王翔 姜萌 章宇 郭栋 张继海

引用本文:
Citation:

基于最优控制理论的国产光抽运小铯钟频率控制算法

宋会杰, 董绍武, 王翔, 姜萌, 章宇, 郭栋, 张继海

Frequency control algorithm of domestic optically pumped small cesium clock based on optimal control theory

Song Hui-Jie, Dong Shao-Wu, Wang Xiang, Jiang Meng, Zhang Yu, Guo Dong, Zhang Ji-Hai
PDF
HTML
导出引用
  • 原子钟频率控制是时间保持工作中的关键技术. 当前守时工作中的频率控制主要针对国外微波钟采用开环控制算法, 但由于国产光抽运小铯钟(下称国产钟)的工作原理和性能不同于国外同类型原子钟, 因此该算法不能很好适应国产钟. 为了提升我国标准时间的自主性和安全性, 本文基于国产钟的噪声特性, 在最优控制理论的框架下研究了线性二次高斯控制算法, 该算法属于闭环控制算法, 从同步时间、频率控制准确度和频率控制稳定度方面研究国产钟性能, 最后分析了不同控制间隔对国产钟性能的影响. 结果表明随着二次损失函数中约束矩阵$ {{{W}}_{\text{R}}} $的增大, 同步时间延长, 控制准确度降低, 控制短期稳定度提高. $ {{{W}}_{\text{R}}} $相同情况下, 随着控制间隔的增大, 同步时间延长, 控制准确度降低, 控制短期稳定度提高, 对于$ {{{W}}_{\text{R}}} =1$时, 控制间隔为1 h的同步时间为5小时, 控制准确度为1.83 ns, 1 h的Allan偏差为1.81×10–13; 控制间隔为8 h的同步时间为28 h, 控制准确度为4.48 ns, 1 h的Allan偏差为1.48×10–13. 控制国产光抽运小铯钟的中长期稳定度都得到提高.
    Frequency control of atomic clock is a key technology in time keeping operation. At present, the open-loop control algorithm is mainly used for the frequency control of foreign microwave clock, but the working principle and performance of domestic optically pumped small cesium clock (hereinafter referred to as domestic clock) are different from those of foreign atomic clock of the same type, so the algorithm cannot be well adapted to domestic clock. In order to improve the autonomy and security of the national standard time, based on the noise characteristics of domestic clock, in this work, the linear quadratic Gaussian control algorithm is studied in the framework of optimal control theory. This algorithm belongs to closed-loop control algorithm. The performance of domestic clock is studied from the aspects of synchronization time, frequency control accuracy and frequency control stability. Finally, the influence of different control intervals on the performance of domestic clock is analyzed. The results show that with the increase of the constraint matrix $ {{{W}}_{\text{R}}} $ in the quadratic loss function, the synchronization time increases, the control accuracy decreases, and the control short-term stability increases. When $ {{{W}}_{\text{R}}} $ is the same, with the increase of control interval, the synchronization time increases, the control accuracy decreases, and the control short-term stability increases. When $ {W_{\text{R}}} = 1 $, the synchronization time with control interval of 1 h is 5 h, the control accuracy is 1.83 ns, and the Allan deviation of 1 hour is 1.81×10–13. When the control interval is 8 h, the synchronization time is 28 h, the control accuracy is 4.48 ns, and the Allan deviation of 1 h is 1.48×10–13. The medium-term stability and long-term stability of domestic optically pumped small cesium clock are both improved.
      通信作者: 董绍武, sdong@ntsc.ac.cn
    • 基金项目: 中国科学院 “西部之光”人才培养计划(批准号: XAB2021YN22)、北京无线电计量测试研究所开放基金(批准号: JLJK2021001A002)和陕西省自然科学基础研究计划(批准号: 2022JQ-014)资助的课题.
      Corresponding author: Dong Shao-Wu, sdong@ntsc.ac.cn
    • Funds: Project supported by the Western Light Project of Chinese Academy of Sciences (Grant No. XAB2021YN22), the Open Fund of Beijing Institute of Radio Metrology and Testing (Grant No. JLJK2021001A002), and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2022JQ-014).
    [1]

    Godel M, Schmidt T D, Furthner J 2019 Metrologia 56 3Google Scholar

    [2]

    Schmidt T D, Trainotti C, Furthner J 2019 Proceedings of the Precise Time and Time Interval Meeting ( ION PTTI 2019), Reston, Virginia, January 28–31, 2019 p290

    [3]

    Galleani L, Signorile G, Formichella V, Sesia I 2020 Metrologia 57 3Google Scholar

    [4]

    Arias E, Panfilo G, Petit G 2011 Metrologia 48 S145Google Scholar

    [5]

    McCarthy D 2011 Metrologia 48 S132Google Scholar

    [6]

    Koppang P A 2016 Metrologia 53 R60Google Scholar

    [7]

    陈法喜, 赵侃, 李立波, 郭宝龙 2022 物理学报 71 230702Google Scholar

    Chen F X, Zhao K, Li L B, Guo B L 2022 Acta Phys. Sin. 71 230702Google Scholar

    [8]

    Song H J, Dong S W, Wu W J, Jiang M, Wang W X 2018 Metrologia 55 350Google Scholar

    [9]

    韩孟纳, 童明雷 2023 物理学报 72 079701Google Scholar

    Han M N, Tong M L 2023 Acta Phys. Sin. 72 079701Google Scholar

    [10]

    Kaczmarek J, Miczulski W, Koziol M, Czubla A 2013 IEEE Trans. Instrum. Meas 65 2828Google Scholar

    [11]

    Panfilo G, Harmegnies A, Tisserand L 2012 Metrologia 49 49Google Scholar

    [12]

    宋会杰, 董绍武, 屈俐俐, 王翔, 广伟 2017 仪器仪表学报 38 1809Google Scholar

    Song H J, Dong S W, Qu L L, Wang X, Guang W 2017 Chin. J. Sci. Instrum. 38 1809Google Scholar

    [13]

    Panfilo G, Harmegnies A, Tisserand L 2014 Metrologia 51 285Google Scholar

    [14]

    宋会杰, 董绍武, 王翔, 章宇, 王燕平 2020 物理学报 69 170201Google Scholar

    Song H J, Dong S W, Wang X, Zhang Y, Wang Y P 2020 Acta Phys. Sin. 69 170201Google Scholar

    [15]

    宋会杰, 董绍武, 王燕平, 安卫, 侯娟 2019 武汉大学学报(信息科学版) 44 1205Google Scholar

    Song H J, Dong S W, Wang Y P, An W, Hou J 2019 Geomat. Inf. Sci. Wuhan Univ. 44 1205Google Scholar

    [16]

    Panfilo G, Arias E F 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 140Google Scholar

    [17]

    Tavella P, Thomas C 1991 Metrologia 28 2Google Scholar

    [18]

    刘云, 王文海, 贺德晶, 周勇壮, 沈咏, 邹宏新 2023 物理学报 72 184202Google Scholar

    Liu Y, Wang W H, He D J, Zhou Y Z, Shen Y, Zou H X 2023 Acta Phys. Sin. 72 184202Google Scholar

    [19]

    梁悦, 谢勇辉, 陈鹏飞, 帅涛, 裴雨贤, 徐昊天, 赵阳, 夏天, 潘晓燕, 张朋军, 林传富 2023 物理学报 72 013702Google Scholar

    Liang Y, Xie Y H, Chen P F, Shuai T, Pei Y X, Xu H T, Zhao Y, Xia T, Pan X Y, Zhang P J, Lin C F 2023 Acta Phys. Sin. 72 013702Google Scholar

    [20]

    邵晓东, 韩海年, 魏志义 2021 物理学报 70 134204Google Scholar

    Shao X D, Han H N, Wei Z Y 2021 Acta Phys. Sin. 70 134204Google Scholar

    [21]

    Galleani L 2008 Metrologia 45 S175Google Scholar

    [22]

    Tavella P 2008 Metrologia 45 S183Google Scholar

    [23]

    Yao J, Parker T E, Ashby N, Levine J 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 127Google Scholar

  • 图 1  铯原子钟与氢原子钟的Allan偏差曲线

    Fig. 1.  Allan deviation curves of cesium atomic clock and hydrogen atomic clock.

    图 2  国产钟的控制结构图

    Fig. 2.  Control structure diagram of domestic clock.

    图 3  不同$ {{{W}}_{\text{R}}} $值的控制同步时间比较

    Fig. 3.  Comparison of control synchronization time with different $ {{{W}}_{\text{R}}} $ values.

    图 4  同步后不同$ {{{W}}_{\text{R}}} $值的控制测量值

    Fig. 4.  Control measurements of different $ {{{W}}_{\text{R}}} $ values after synchronization

    图 5  约束矩阵$ {{{W}}_{\text{R}}} $取不同值时的控制国产钟的稳定度

    Fig. 5.  Stability of the controlled domestic clock with different values of the constrained matrix $ {{{W}}_{\text{R}}} $.

    图 6  约束矩阵$ {{{W}}_{\text{R}}} $取不同值时控制测量值的稳定度

    Fig. 6.  Stability of control measurement with different values of the constrained matrix $ {{{W}}_{\text{R}}} $.

    图 7  不同控制间隔的同步时间比较

    Fig. 7.  Comparison of synchronization time with different control interval.

    图 8  同步后不同控制间隔的测量值

    Fig. 8.  Measurements at different control intervals after synchronization.

    图 9  基于不同控制间隔的国产钟的稳定度

    Fig. 9.  Stability of the domestic clock based on different control intervals.

    图 10  基于不同控制间隔的控制测量值的稳定度

    Fig. 10.  Stability of control measurements based on different control intervals.

    图 11  控制后Cs3050与UTCr的相位偏差

    Fig. 11.  Phase deviation of the controlled Cs3050 from the UTCr.

    图 12  自由运行Cs3050与驾驭后Cs3050相对于UTCr的频率稳定度

    Fig. 12.  Frequency stability of free running Cs3050 and controlled Cs3050 relatived to UTCr.

    表 1  同步后不同$ {{{W}}_{\text{R}}} $值的3倍标准差($ 3\sigma $)

    Table 1.  Three times standard deviation of different $ {{{W}}_{\text{R}}} $values after synchronization.

    $ {{{W}}_{\text{R}}} $
    1/21102104
    $ 3\sigma $的值/ns1.761.833.036.26
    下载: 导出CSV

    表 2  同步后不同控制间隔测量值的3倍标准差($ 3\sigma $)

    Table 2.  Three times standard deviation of different control intervals after synchronization.

    控制间隔/h
    1248
    $ 3\sigma $的值/ns1.832.293.104.48
    下载: 导出CSV

    表 3  自由运行Cs3050与驾驭后Cs3050相对于UTCr的频率稳定度

    Table 3.  Frequency stability of free running Cs3050 and controlled Cs3050 relative to UTCr.

    取样间隔/d
    10 20 30 40
    Allan偏差
    (Cs3050)
    1.85×10–14 2.16×10–14 2.10×10–14 2.50×10–14
    Allan偏差
    (控制Cs3050)
    1.24×10–15 9.17×10–16 8.86×10–16 6.73×10–16
    下载: 导出CSV

    表 4  自由运行 Cs3050相对于UTCr的频率漂移

    Table 4.  Frequency drift of free-running Cs3050 with respect to UTCr.

    估计周期 (MJD) 59978—60007 60008—60037 60038—60067 60068—60097 60098—60127
    频率漂移/(ns·d–1) 0.1938 –0.0236 0.0446 –0.2062 0.1859
    估计周期 (MJD) 60128—60157 60158—60187 60188—60217 60218—60247 60248—60277
    频率漂移/(ns·d–1) –0.0374 –0.1158 0.3041 0.0457 0.1263
    下载: 导出CSV

    表 5  控制Cs3050相对于UTCr的频率漂移

    Table 5.  Frequency drift of controlled Cs3050 relative to UTCr.

    估计周期(MJD) 59978—60007 60008—60037 60038—60067 60068—60097 60098—60127
    频率漂移/(ns·d–1) 0.0050 0.0010 –0.0131 0.0031 0.0016
    估计周期(MJD) 60128—60157 60158—60187 60188—60217 60218—60247 60248—60277
    频率漂移/(ns·d–1) –0.0088 0.0082 0.0143 –0.0029 –0.0003
    下载: 导出CSV
  • [1]

    Godel M, Schmidt T D, Furthner J 2019 Metrologia 56 3Google Scholar

    [2]

    Schmidt T D, Trainotti C, Furthner J 2019 Proceedings of the Precise Time and Time Interval Meeting ( ION PTTI 2019), Reston, Virginia, January 28–31, 2019 p290

    [3]

    Galleani L, Signorile G, Formichella V, Sesia I 2020 Metrologia 57 3Google Scholar

    [4]

    Arias E, Panfilo G, Petit G 2011 Metrologia 48 S145Google Scholar

    [5]

    McCarthy D 2011 Metrologia 48 S132Google Scholar

    [6]

    Koppang P A 2016 Metrologia 53 R60Google Scholar

    [7]

    陈法喜, 赵侃, 李立波, 郭宝龙 2022 物理学报 71 230702Google Scholar

    Chen F X, Zhao K, Li L B, Guo B L 2022 Acta Phys. Sin. 71 230702Google Scholar

    [8]

    Song H J, Dong S W, Wu W J, Jiang M, Wang W X 2018 Metrologia 55 350Google Scholar

    [9]

    韩孟纳, 童明雷 2023 物理学报 72 079701Google Scholar

    Han M N, Tong M L 2023 Acta Phys. Sin. 72 079701Google Scholar

    [10]

    Kaczmarek J, Miczulski W, Koziol M, Czubla A 2013 IEEE Trans. Instrum. Meas 65 2828Google Scholar

    [11]

    Panfilo G, Harmegnies A, Tisserand L 2012 Metrologia 49 49Google Scholar

    [12]

    宋会杰, 董绍武, 屈俐俐, 王翔, 广伟 2017 仪器仪表学报 38 1809Google Scholar

    Song H J, Dong S W, Qu L L, Wang X, Guang W 2017 Chin. J. Sci. Instrum. 38 1809Google Scholar

    [13]

    Panfilo G, Harmegnies A, Tisserand L 2014 Metrologia 51 285Google Scholar

    [14]

    宋会杰, 董绍武, 王翔, 章宇, 王燕平 2020 物理学报 69 170201Google Scholar

    Song H J, Dong S W, Wang X, Zhang Y, Wang Y P 2020 Acta Phys. Sin. 69 170201Google Scholar

    [15]

    宋会杰, 董绍武, 王燕平, 安卫, 侯娟 2019 武汉大学学报(信息科学版) 44 1205Google Scholar

    Song H J, Dong S W, Wang Y P, An W, Hou J 2019 Geomat. Inf. Sci. Wuhan Univ. 44 1205Google Scholar

    [16]

    Panfilo G, Arias E F 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 140Google Scholar

    [17]

    Tavella P, Thomas C 1991 Metrologia 28 2Google Scholar

    [18]

    刘云, 王文海, 贺德晶, 周勇壮, 沈咏, 邹宏新 2023 物理学报 72 184202Google Scholar

    Liu Y, Wang W H, He D J, Zhou Y Z, Shen Y, Zou H X 2023 Acta Phys. Sin. 72 184202Google Scholar

    [19]

    梁悦, 谢勇辉, 陈鹏飞, 帅涛, 裴雨贤, 徐昊天, 赵阳, 夏天, 潘晓燕, 张朋军, 林传富 2023 物理学报 72 013702Google Scholar

    Liang Y, Xie Y H, Chen P F, Shuai T, Pei Y X, Xu H T, Zhao Y, Xia T, Pan X Y, Zhang P J, Lin C F 2023 Acta Phys. Sin. 72 013702Google Scholar

    [20]

    邵晓东, 韩海年, 魏志义 2021 物理学报 70 134204Google Scholar

    Shao X D, Han H N, Wei Z Y 2021 Acta Phys. Sin. 70 134204Google Scholar

    [21]

    Galleani L 2008 Metrologia 45 S175Google Scholar

    [22]

    Tavella P 2008 Metrologia 45 S183Google Scholar

    [23]

    Yao J, Parker T E, Ashby N, Levine J 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 127Google Scholar

  • [1] 梁悦, 谢勇辉, 陈鹏飞, 帅涛, 裴雨贤, 徐昊天, 赵阳, 夏天, 潘晓燕, 张朋军, 林传富. 氢原子钟双选态束光学系统仿真分析. 物理学报, 2023, 72(1): 013702. doi: 10.7498/aps.72.20221363
    [2] 陈泽锐, 刘光存, 俞振华. 谐振子势阱中双费米原子光钟的碰撞频移. 物理学报, 2021, 70(18): 180602. doi: 10.7498/aps.70.20210243
    [3] 张玉燕, 殷东哲, 温银堂, 罗小元. 基于自适应Kalman滤波的平面阵列电容成像. 物理学报, 2021, 70(11): 118102. doi: 10.7498/aps.70.20210442
    [4] 宋会杰, 董绍武, 王翔, 章宇, 王燕平. 原子钟噪声变化时改进的Kalman滤波时间尺度算法. 物理学报, 2020, 69(17): 170201. doi: 10.7498/aps.69.20191920
    [5] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量. 物理学报, 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [6] 李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟黑体辐射频移评估. 物理学报, 2019, 68(9): 093701. doi: 10.7498/aps.68.20182294
    [7] 郭阳, 尹默娟, 徐琴芳, 王叶兵, 卢本全, 任洁, 赵芳婧, 常宏. 锶原子光晶格钟自旋极化谱线的探测. 物理学报, 2018, 67(7): 070601. doi: 10.7498/aps.67.20172759
    [8] 林弋戈, 方占军. 锶原子光晶格钟. 物理学报, 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [9] 徐琴芳, 尹默娟, 孔德欢, 王叶兵, 卢本全, 郭阳, 常宏. 光梳主动滤波放大实现锶原子光钟二级冷却光源. 物理学报, 2018, 67(8): 080601. doi: 10.7498/aps.67.20172733
    [10] 张曦, 刘慧, 姜坤良, 王进起, 熊转贤, 贺凌翔, 吕宝龙. 利用传输腔技术实现镱原子光钟光晶格场的频率稳定. 物理学报, 2017, 66(16): 164205. doi: 10.7498/aps.66.164205
    [11] 张星, 张奕, 张建伟, 张建, 钟础宇, 黄佑文, 宁永强, 顾思洪, 王立军. 894nm高温垂直腔面发射激光器及其芯片级铯原子钟系统的应用. 物理学报, 2016, 65(13): 134204. doi: 10.7498/aps.65.134204
    [12] 贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 双重频率锁定的腔衰荡吸收光谱技术及信号处理. 物理学报, 2016, 65(12): 128701. doi: 10.7498/aps.65.128701
    [13] 尹毅, 张奕, 谭伯仲, 陈杰华, 顾思洪. 芯片原子钟相干布居囚禁谱线特性研究. 物理学报, 2015, 64(3): 034207. doi: 10.7498/aps.64.034207
    [14] 林旭, 罗志才. 一种新的卫星钟差Kalman滤波噪声协方差估计方法. 物理学报, 2015, 64(8): 080201. doi: 10.7498/aps.64.080201
    [15] 刘洋洋, 廉保旺, 赵宏伟, 刘亚擎. Kalman滤波辅助的室内伪卫星相对定位算法. 物理学报, 2014, 63(22): 228402. doi: 10.7498/aps.63.228402
    [16] 吴长江, 阮军, 陈江, 张辉, 张首刚. 应用于铯原子喷泉钟的二维磁光阱研制. 物理学报, 2013, 62(6): 063201. doi: 10.7498/aps.62.063201
    [17] 高峰, 王叶兵, 田晓, 许朋, 常宏. 锶原子三重态谱线的观测及在光钟中的应用. 物理学报, 2012, 61(17): 173201. doi: 10.7498/aps.61.173201
    [18] 张路, 钟苏川, 彭皓, 罗懋康. 乘性二次噪声驱动的线性过阻尼振子的随机共振. 物理学报, 2012, 61(13): 130503. doi: 10.7498/aps.61.130503
    [19] 徐志君, 李鹏华. 玻色凝聚原子云的二次干涉及其放大效应. 物理学报, 2007, 56(10): 5607-5612. doi: 10.7498/aps.56.5607
    [20] 柯熙政, 吴振森. 原子钟噪声中的混沌现象及其统计特性. 物理学报, 1998, 47(9): 1436-1449. doi: 10.7498/aps.47.1436
计量
  • 文章访问数:  1945
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-27
  • 修回日期:  2023-12-22
  • 上网日期:  2024-01-03
  • 刊出日期:  2024-03-20

/

返回文章
返回