搜索

x
中国物理学会期刊

近红外二区小动物活体荧光成像系统的研制

CSTR: 32037.14.aps.73.20231910

Development of NIR-II small animal living fluorescence imaging system

CSTR: 32037.14.aps.73.20231910
PDF
HTML
导出引用
  • 近年来, 小动物活体荧光成像系统被广泛应用于生物医学成像研究. 但是, 现有的荧光成像系统存在穿透深度有限、图像信噪比低等缺点. 因此, 利用近红外二区(near-infrared-II, NIR-II, 900—1880 nm)荧光成像技术在生物组织中具有的低吸收、低散射和穿透深度深等优点, 研制出一套NIR-II小动物活体荧光成像系统, 提出了一种荧光图像增强校正方法, 并设计生物组织模拟实验和活体动物实验测试该系统的性能和成像效果. 实验结果表明, 该系统具有穿透深度深、信噪比高、灵敏度高等优点. 结合商用的吲哚菁绿试剂和聚集诱导发光染料, 该系统可实时监测小鼠体内的血管分布情况, 并对深层组织器官进行持续监测, 实现活体小鼠清醒状态下的动态监测研究, 有助于推动生物医学成像领域的肿瘤研究和药物开发研究等进入一个新阶段.

     

    Fluorescence imaging technology can dynamically monitor gene and cell changing in live animals in real-time, with advantages such as high sensitivity, high resolution, and non-invasion. In recent years, it has been widely used in tumor research, gene expression research, drug development research, etc. The imaging wavelength of traditional fluorescence imaging technology falls in the visible and near-infrared-I region. Due to the absorption and scattering effects of light propagation in biological tissues, and the inherent fluorescence of biological tissues, traditional fluorescence imaging techniques still have significant limitations in penetration depth and image signal-to-noise ratio. In this work, a highly integrated near-infrared-II (NIR-II, 900—1880 nm) small animal living fluorescence imaging system is developed by taking the advantages of NIR-II fluorescence imaging technology, such as low absorption, low scattering, and deep penetration depth in biological tissues. And a method of enhancing and correcting fluorescence image is proposed to optimize fluorescence images. In this work, the biological tissue simulation experiments and live animal experiments are conducted to test the performance and imaging effect of the system. The experimental results show that the system has the advantages of deep penetration depth, high signal-to-noise ratio, and high sensitivity. Combined with commercial indocyanine green reagents and aggregation-induced emission dyes, this system can monitor the distribution of blood vessels in real time and continuously monitor deep tissues and organs in mice, and conduct the dynamically monitoring research in living mice in a conscious state. This helps to promote tumor research and drug development research in the field of biomedical imaging to enter a new stage.

     

    目录

    /

    返回文章
    返回