搜索

x
中国物理学会期刊

基于Si3N4微环混沌光频梳的Tbit/s并行实时物理随机数方案

CSTR: 32037.14.aps.73.20231913

A Tbit/s parallel real-time physical random number scheme based on chaos optical frequency comb of Si3N4 micro-ring

CSTR: 32037.14.aps.73.20231913
PDF
HTML
导出引用
  • 本文结合片上Si3N4超高Q微环的混沌光频梳和高速现场可编程门阵列, 提出并实验验证了一种超高速的并行实时物理随机数方案. 结果表明, Si3N4超高Q微环实验得到的光频梳齿包含数百个信道, 通过调节Si3N4微环的工作状态使其处于光学混沌态, 从而成为性能优良的物理熵源. 采用现场可编程门阵列(FPGA) 板载的多位模数转换器, 对滤波后频梳的光混沌信号进行离散采样量化, 生成8位二进制比特流. 对该比特流进行实时的自延迟异或处理, 并保留4位最低有效位, 实验最终实现了单信道实时速率达5 Gbits/s的合格物理随机比特流. 结合实验中数目达294的混沌光频梳齿, 本方案的并行实时随机数的吞吐量可望达到1.74 Tbits/s. 这些结果可为实时物理随机数源提供集成、超高速的新可选方案.

     

    Physical random numbers (PRNs) own various advantageous characteristics, including unpredictability, non-repeatability, higher security and reliability. Meanwhile, laser chaos has attracted great attention in the field of PRN. In terms of single channel PRN, laser chaos schemes can achieve a much higher bit-rate than traditional quantum PRN schemes. So far, various laser chaos PRN schemes have been discussed in order to enhance the performance of single channel laser chaos PRN. However, considering the limited bandwidth of laser chaos, especially the bandwidth of digital electronic circuit, the development potential of single channel PRN should be limited and may fall into the trap of high performance and expensive cost. Recently, the applications of multi-channel parallel PRN schemes have been developed. These parallel types may balance the high performance of PRN in a low cost. Recent progress indicates that chaotic micro-comb may have good potential. The micro-comb exhibits highly nonlinear and complex dynamic characteristics, and each comb tooth may show chaotic oscillation. The wavelength division multiplexing technology enables large-scale optical parallel output, providing the possiblity for large-scale parallel PRN generation. However, most of these PRN schemes are offline rather than true online and real-time random numbers. Thus, the development of real, online real-time parallel PRN solutions has great interest and research value in related fields.
    Herein we experimentally demonstrat an ultra-high-speed parallel real-time physical random number generator, which is achieved though the combination of chaotic micro-comb of chip-scale Si3N4 ultra-high Q micro-resonator and a high-speed field programmable gate array (FPGA). The results show that the Si3N4 ultra-high Q micro-resonator generates a micro-comb with hundreds of channels, each channel can route into an optically chaotic state, and become an excellent physical entropy source. Using FPGA onboard multi-bit analog-to-digital converter, the filtered optical chaos signal from the micro-comb is discretely sampled and quantized, and resulting in an 8-bit binary bitstream. Taking real-time self-delayed exclusive or (XOR) processing of bitstream and preserving 4 least significant bits, the qualified physical random bitstream with real-time 5 Gbits/s rate is realized experimentally. Considering that there are 294 chaotic comb teeths, our approach anticipates a throughput of 1.74 Tbits/s of real-time physical random bits. Our results could offer a new integrated and ultra-high-speed option for real-time physical random number sources.

     

    目录

    /

    返回文章
    返回