搜索

x
中国物理学会期刊

中子诱发伽马产生截面测量中的谱分析技术

CSTR: 32037.14.aps.73.20231980

Spectral analysis techniques in measuring neutron-induced gamma production cross-section

CSTR: 32037.14.aps.73.20231980
PDF
HTML
导出引用
  • 在中子反应截面测量中, 瞬发γ射线法是一种通过测量核反应放出的特征γ射线来得到截面数据的方法, 这种方法能够避免竞争反应道产生的干扰. 但是瞬发γ射线法为在线实验, 本底来源丰富, 造成了在线实验谱分析难度大, 结果不确定性高. 本文研究了使用瞬发γ射线法测量中子诱发伽马产生截面的谱分析技术, 总结了中子诱发伽马产生截面测量中不同特征峰形成的物理过程, 降低了在线实验谱处理过程中计算效应峰净面积的不确定度. 通过采用各种响应函数来对全能峰、本底以及干扰因素进行拟合的方法, 精确提取了效应峰的净面积. 针对弱峰的净面积, 本方法可将峰区域选取引起的波动从30%降低到1%以内, 且净面积拟合值与理论值的差距与统计不确定度相当; 对于解重峰, 本方法所得结果与理论值差距显著低于1%. 通过效率曲线分析、拟合优度计算等方法同时验证了谱分析方法的可靠性.

     

    In neutron reaction cross-section measurements, the prompt gamma ray method is a method of obtaining cross-section data by measuring the characteristic gamma rays emitted by a nuclear reaction, thereby avoiding the interference generated by competing reaction channels. However, the prompt gamma ray method is an on-line experiment with abundant background sources, high background counts of the obtained experimental spectra, and numerous interferences such as weak peaks, overlapping peaks, Compton scattering peaks, and neutron effect peaks of Ge in HPGe, which cause the difficulty in analysing the on-line experimental spectra and the high uncertainty in the results. In this work, we study and summarise the spectrum analysis techniques of the prompt gamma ray method that can be used for measuring the neutron cross-section, and comprehensively consider the physical processes of the formation of different characteristic peaks of the prompt gamma ray method, so as to reduce the uncertainty of calculating the net area of the effect peaks in the process of on-line experimental spectrum processing. The Compton edge, weak peaks, overlapping peaks, and the neutron response peaks of the HPGe detector on-line experiment are discussed and analysed, and the net area of the effect peaks is accurately extracted by combining several reasonable functions to fit the total energy peak, the background, and the interferences. For the net area of weak peaks, this method can reduce the peak area selection caused fluctuation from 30% to less than 1%, and the difference between the fitted value of the net area and the theoretical value is comparable to the statistical uncertainty; for the overlapping peaks’ decomposition, the difference between the results obtained by this method and the theoretical value is significantly lower than 1%. The reliability of the spectral analysis method is simultaneously verified by efficiency curve analysis and goodness-of-fit calculation.

     

    目录

    /

    返回文章
    返回