搜索

x
中国物理学会期刊

基于相位同步动力学重构网络单纯复形的相互作用

CSTR: 32037.14.aps.73.20240334

Reconstruction of simplex structures based on phase synchronization dynamics

CSTR: 32037.14.aps.73.20240334
PDF
HTML
导出引用
  • 复杂网络的高阶相互作用, 如单纯复形和超边等, 已经成为了研究的热点. 本文提出一种基于节点同步动力学的特性来重构网络的单纯复形结构的新方法. 通过分析Kuramoto-Sakaguchi模型中节点相位的时间序列同步性, 建立了网络拓扑结构的解析描述, 实现了对网络结构的精确辨识. 该方法的核心在于, 运用理论手段推导得到了拉普拉斯矩阵与线性化Kuramoto-Sakaguchi系统相位之间的解析联系. 这一联系不仅具有强大的普适性, 而且能够有效地应用于识别包含任意阶单纯复形相互作用的网络结构. 本文的研究进一步表明, 这种解析关系能够用于鉴别网络中的对称节点, 并且通过数值模拟证实了间接相互作用节点之间发生遥同步的现象与网络结构的对称性有着密切的联系. 这些发现为深入理解网络的结构特性和动力学行为提供了新的理论工具和视角.

     

    High-order interactions as exemplified by simplex and hyper-edge structures have emerged as a prominent area of interest in complex network research. These high-order interactions introduce much complexity into the interplay between nodes, which often require advanced analytical approaches to fully characterize the underlying network structures. For example, methods based on statistical dependencies have been proposed to identify high-order structures from multi-variate time series. In this work, we reconstruct the simplex structures of a network based on synchronization dynamics between network nodes. More specifically, we construct a topological structure of network by examining the temporal synchronization of phase time series data derived from the Kuramoto-Sakaguchi (KS) model. In addition, we show that there is an analytical relationship between the Laplacian matrix of the network and phase variables of the linearized KS model. Our method identifies structural symmetric nodes within a network, which therefore builds a correlation between node synchronization behavior and network’s symmetry. This representation allows for identifying high-order network structure, showing its advantages over statistical methods. In addition, remote synchronization is a complex dynamical process, where spatially separated nodes within a network can synchronize their states despite the lack of direct interaction. Furthermore, through numerical simulations, we observe the strong correlation between remote synchronization among indirectly interacting nodes and the network’s underlying symmetry. This finding reveals the intricate relationship between network structure and the dynamical process. In summary, we propose a powerful tool for analyzing complex networks, in particular uncovering the interplay between network structure and dynamics. We provide novel insights for further exploring and understanding the high-order interactions and the underlying symmetry of complex networks.

     

    目录

    /

    返回文章
    返回