搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

莫尔超晶格中的分数化拓扑量子态

刘钊

引用本文:
Citation:

莫尔超晶格中的分数化拓扑量子态

刘钊

Fractionalized Topological States in Moiré Superlattices

Zhao Liu
PDF
导出引用
  • 带有分数化准粒子激发的分数量子霍尔态是一种奇特的强关联拓扑量子物态,自1982年在强磁场二维电子气中被首次观测到以来一直是凝聚态物理重要的前沿方向. 去年来,有多个团队在基于过渡金属硫族化合物和石墨烯的莫尔超晶格中观测到了零磁场分数量子霍尔效应,在莫尔超晶格中还发现了分数量子自旋霍尔效应的迹象. 这表明莫尔超晶格体系能够有效调控能带及相互作用,是在零磁场条件下实现分数化拓扑量子态的理想平台. 本文将简要论述与此相关的研究进展和存在的挑战, 并对该领域未来可能的发展方向做出展望.
    Fractional quantum Hall (FQH) states with fractionalzed quasiparticles are exotic topologically ordered quantum states driven by strong correlation between particles. Since the first discovery in 1982 in two-dimensional electron gases penetrated by strong magnetic fields, FQH physics has become an attractive frontier of condensed matter physics. From the last year, several research groups have reported observations of FQH transport at zero magnetic field in moir\'e superlattices based on transition metal dichalcogenides (TMD) and graphene. Moreover, evidence of fractional quantum spin Hall effect was also reported in TMD moir\'e superlattices. These results demonstrate that moir\'e superlattices are ideal platforms to control band structure and interactions to realize fractionalized topological states without external magnetic fields. In this paper, we will briefly review the recent progress. We will also summarize the remaining challenges and discuss the possible future development in this field.
  • [1]

    Kang K, Shen B, Qiu Y, Zeng Y, Xia Z, Watanabe K, Taniguchi T, Shan J, Mak K F 2024 Nature 628 522

    [2]

    Moore G, Read N 1991 Nuclear Physics B 360 362

    [3]

    Cai J, Anderson E, Wang C, Zhang X, Liu X, Holtzmann W, Zhang Y, Fan F, Taniguchi T, Watanabe K, Ran Y, Cao T, Fu L, Xiao D, Yao W, Xu X 2023 Nature 622 63

    [4]

    Zeng Y, Xia Z, Kang K, Zhu J, Knüppel P, Vaswani C, Watanabe K, Taniguchi T, Mak K F, Shan J 2023 Nature 622 69

    [5]

    Park H, Cai J, Anderson E, Zhang Y, Zhu J, Liu X, Wang C, Holtzmann W, Hu C, Liu Z, Taniguchi T, Watanabe K, Chu J H, Cao T, Fu L, Yao W, Chang C Z, Cobden D, Xiao D, Xu X 2023 Nature 622 74

    [6]

    Xu F, Sun Z, Jia T, Liu C, Xu C, Li C, Gu Y, Watanabe K, Taniguchi T, Tong B, Jia J, Shi Z, Jiang S, Zhang Y, Liu X, Li T 2023 Phys. Rev. X 13 031037

    [7]

    Lu Z, Han T, Yao Y, Reddy A P, Yang J, Seo J, Watanabe K, Taniguchi T, Fu L, Ju L 2024 Nature 626 759

    [8]

    Xie J, Huo Z, Lu X, Feng Z, Zhang Z, Wang W, Yang Q, Watanabe K, Taniguchi T, Liu K, Song Z, Xie X C, Liu J, Lu X 2024 arXiv 2405.16944

    [9]

    Klitzing K v, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494

    [10]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559

    [11]

    Wen X G 1995 Advances in Physics 44 405

    [12]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083

    [13]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015

    [14]

    Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167

    [15]

    Regnault N, Bernevig B A 2011 Phys. Rev. X 1 021014

    [16]

    Parameswaran S A, Roy R, Sondhi S L 2013 Comptes Rendus. Physique 14 816

    [17]

    BERGHOLTZ E J, LIU Z 2013 International Journal of Modern Physics B 27 1330017

    [18]

    Neupert T, Chamon C, Iadecola T, Santos L H, Mudry C 2015 Physica Scripta 2015 014005

    [19]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [20]

    Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106802

    [21]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [22]

    Wang C, Zhang X W, Liu X, Wang J, Cao T, Xiao D 2024 arXiv 2404.05697

    [23]

    Reddy A P, Paul N, Abouelkomsan A, Fu L 2024 arXiv 2403.00059

    [24]

    Ahn C E, Lee W, Yananose K, Kim Y, Cho G Y 2024 arXiv 2403.19155

    [25]

    Abouelkomsan A, Fu L 2024 arXiv 2406.14617

    [26]

    Sodemann Villadiego I 2024 Phys. Rev. B 110 045114

    [27]

    Zhang Y H 2024 arXiv 2402.05112

    [28]

    Jian C M, Cheng M, Xu C 2024 arXiv 2403.07054

    [29]

    May-Mann J, Stern A, Devakul T 2024 arXiv 2403.03964

    [30]

    Zhang Y H 2024 arXiv 2403.12126

    [31]

    Herzog-Arbeitman J, Wang Y, Liu J, Tam P M, Qi Z, Jia Y, Efetov D K, Vafek O, Regnault N, Weng H, Wu Q, Bernevig B A, Yu J 2024 Phys. Rev. B 109 205122

    [32]

    Dong Z, Patri A S, Senthil T 2023 arXiv 2311.03445

    [33]

    Zhou B, Yang H, Zhang Y H 2024 arXiv 2311.04217

    [34]

    Dong J, Wang T, Wang T, Soejima T, Zaletel M P, Vishwanath A, Parker D E 2024 arXiv 2311.05568

    [35]

    Guo Z, Lu X, Xie B, Liu J 2023 arXiv 2311.14368

    [36]

    Kwan Y H, Yu J, Herzog-Arbeitman J, Efetov D K, Regnault N, Bernevig B A 2023 arXiv 2312.11617

    [37]

    Lu Z, Han T, Yao Y, Yang J, Seo J, Shi L, Ye S, Watanabe K, Taniguchi T, Ju L 2024 arXiv 2408.10203

    [38]

    Waters D, Okounkova A, Su R, Zhou B, Yao J, Watanabe K, Taniguchi T, Xu X, Zhang Y H, Folk J, Yankowitz M 2024 arXiv 2408.10133

    [39]

    Yu J, Herzog-Arbeitman J, Kwan Y H, Regnault N, Bernevig B A 2024 arXiv 2407.13770

    [40]

    Ji Z, Park H, Barber M E, Hu C, Watanabe K, Taniguchi T, Chu J H, Xu X, xun Shen Z 2024 arXiv 2404.07157

    [41]

    Park H, Cai J, Anderson E, Zhang X W, Liu X, Holtzmann W, Li W, Wang C, Hu C, Zhao Y, Taniguchi T, Watanabe K, Yang J, Cobden D, Chu J H, Regnault N, Bernevig B A, Fu L, Cao T, Xiao D, Xu X 2024 arXiv 2406.09591

    [42]

    Xu F, Chang X, Xiao J, Zhang Y, Liu F, Sun Z, Mao N, Peshcherenko N, Li J, Watanabe K, Taniguchi T, Tong B, Lu L, Jia J, Qian D, Shi Z, Zhang Y, Liu X, Jiang S, Li T 2024 arXiv 2406.09687

    [43]

    Kwan Y H, Wagner G, Yu J, Dagnino A K, Jiang Y, Xu X, Bernevig B A, Neupert T, Regnault N 2024 arXiv 2407.02560

  • [1] 杨昆. 分数量子霍尔液体中的几何自由度及类引力子元激发. 物理学报, doi: 10.7498/aps.73.20240994
    [2] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, doi: 10.7498/aps.72.20230690
    [3] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展. 物理学报, doi: 10.7498/aps.72.20230698
    [4] 古杰, 马立国. 莫尔晶格中的激子绝缘体. 物理学报, doi: 10.7498/aps.72.20230079
    [5] 徐琨淇, 胡成, 沈沛约, 马赛群, 周先亮, 梁齐, 史志文. 叠层/转角二维原子晶体结构与极化激元的近场光学表征. 物理学报, doi: 10.7498/aps.72.20222145
    [6] 郭瑞平, 俞弘毅. 二维半导体莫尔超晶格中随位置与动量变化的层间耦合. 物理学报, doi: 10.7498/aps.72.20222046
    [7] 吴泽飞, 黄美珍, 王宁. 二维莫尔超晶格中的非线性霍尔效应. 物理学报, doi: 10.7498/aps.72.20231324
    [8] 李庆鑫, 黄焱, 陈以威, 朱雨剑, 朱旺, 宋珺威, 安冬冬, 甘祺康, 王开元, 王浩林, 麦志洪, Andy Shen, 郗传英, 张警蕾, 于葛亮, 王雷. 双层石墨烯中的偶数分母分数量子霍尔态. 物理学报, doi: 10.7498/aps.71.20220905
    [9] 吴帆帆, 季怡汝, 杨威, 张广宇. 二硫化钼的电子能带结构和低温输运实验进展. 物理学报, doi: 10.7498/aps.71.20220015
    [10] 王仲锐, 姜宇航. 转角二维量子材料中平带相关的新奇电子态物性. 物理学报, doi: 10.7498/aps.71.20220064
    [11] 李听昕. 二维范德瓦耳斯半导体莫尔超晶格实验研究进展. 物理学报, doi: 10.7498/aps.71.20220347
    [12] 詹真, 张亚磊, 袁声军. 石墨烯莫尔超晶格的晶格弛豫与衬底效应. 物理学报, doi: 10.7498/aps.71.20220872
    [13] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子. 物理学报, doi: 10.7498/aps.69.20200680
    [14] 何映萍, 洪健松, 刘雄军. 马约拉纳零能模的非阿贝尔统计及其在拓扑量子计算的应用. 物理学报, doi: 10.7498/aps.69.20200812
    [15] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, doi: 10.7498/aps.68.20190951
    [16] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学. 物理学报, doi: 10.7498/aps.68.20191433
    [17] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展. 物理学报, doi: 10.7498/aps.68.20191317
    [18] 卢晓波, 张广宇. 石墨烯莫尔超晶格. 物理学报, doi: 10.7498/aps.64.077305
    [19] 熊小明, 周世勋. 质心坐标系中分数量子Hall效应体系的能量本征值. 物理学报, doi: 10.7498/aps.37.1010
    [20] 熊小明, 周世勋. 分数量子Hall效应的有限集团研究. 物理学报, doi: 10.7498/aps.36.1630
计量
  • 文章访问数:  62
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-13

/

返回文章
返回