搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红外调制光致发光光谱技术:从宽波段覆盖到微区高通量测量

邵军 陈熙仁 王嫚 陆卫

引用本文:
Citation:

红外调制光致发光光谱技术:从宽波段覆盖到微区高通量测量

邵军, 陈熙仁, 王嫚, 陆卫

Infrared-modulated photoluminescence spectroscopy: from wide-band coverage to micro-area and high-throughput scanning imaging

Shao Jun, Chen Xi-Ren, Wang Man, Lu Wei
PDF
导出引用
  • 光致发光光谱能够揭示半导体材料带隙、杂质能级等电子结构信息,还可分析界面、载流子寿命、量子效率,在紫外-近红外波段得到广泛应用.在约4 m以长红外波段,由于热背景干扰强、光致发光信号弱、探测能力低,光致发光光谱研究长期受限.本文介绍了利用傅里叶变换光谱仪测量光致发光光谱的常规方法,简述了为突破红外波段困境于1989年提出、历经20多年发展的连续扫描傅里叶变换双调制光致发光光谱方法及所受机理局限;分析了2006年报道的基于步进扫描傅里叶变换光谱仪的红外调制光致发光光谱方法的抗干扰、灵敏度、信噪比优势,例举了国际上诸多研究组对红外调制光致发光光谱方法有效性的例证和以此取得的应用研究进展;总结了近年来宽波段、高通量扫描成像和空间微区分辨红外调制光致发光光谱测试方法发展以及从0.56-20 m可见-远红外宽波段覆盖到千级通道光谱高通量检测、2-3 m微区分辨红外调制光致发光光谱技术进步,列举了应用研究稀氮/稀铋量子阱、HgCdTe外延膜、InAs/GaSb超晶格等可见-远红外半导体材料阶段结果和合作研究典型进展.论文展现了红外调制光致发光光谱方法先进性和宽波段、高通量扫描成像与空间微区分辨光谱测试方法有效性,预见了未来进一步应用研究方向.
    Photoluminescence (PL) spectroscopy has been widely used in the ultraviolet-near-infrared spectral range for over seventy years since the very early report in 1950’s, because it not only reveals the electronic structure information of, e.g., band gap and impurity energy levels of semiconductor materials, but also serves as an efficient tool for analyzing interfacial structures, carrier lifetime, and quantum efficiency. In the infrared band beyond about 4 μm, however, the study of PL spectroscopy had been limited for decades long due to strong thermal background interference, weak PL signal and low detection ability. In this review, a conventional PL method is introduced based on a Fourier transform infrared (FTIR) spectrometer, and a continuous-scan FTIR spectrometer-based double-modulation PL (csFTIR-DMPL) method is briefly described that was proposed in 1989 for breaking through the dilemma of the infrared band, and developed continuously in the later more than 20 years, with its limitations emphasized. Then, a step-scan FTIR spectrometer-based infrared modulated PL (ssFTIR-MPL) method reported in 2006 is analyzed with highlights on its advantages of anti-interference, sensitivity and signal-to-noise ratio, followed by enumerating its effectiveness demonstration and application progress in many research groups worldwide. Further developments in recent years are then summarized of wide-band, high-throughput scanning imaging and spatial micro-resolution infrared modulated PL spectroscopic experimental systems, and the technological progresses are demonstrated of infrared-modulated PL spectroscopy from 0.56-20 μm visible-far-infrared broadband coverage to > 1k high-throughput spectra imaging and ≤2-3 μm spatial micro-resolution. Typical achievements of collaborative research are enumerated in the visible-far-infrared semiconductor materials of dilute nitrogen/dilute bismuth quantum wells, HgCdTe epitaxial films, and InAs/GaSb superlattices. The results presented demonstrate the advancement of infrared modulated PL spectroscopy and the effectiveness of the experimental systems, and foresee further application and development in the future.
  • [1]

    Fonoberov V A, Pokatilov E P, Fomin V M, Devreese J T 2004 Phys. Rev. Lett. 92 127402.

    [2]

    Wang Q Q, Muller A, Cheng M T, Zhou H J, Bianucci P, Shih C K 2005 Phys. Rev. Lett. 95 187404.

    [3]

    Jho Y D, Wang X, Kono J, Reitze D H, Wei X, Belyanin A A, Kocharovsky V V, Kocharovsky Vl V, Solomon G S 2006 Phys. Rev. Lett. 96 237401.

    [4]

    Jones R E, Yu K M, Li S X, Walukiewicz W, Ager J W, Haller E E, Lu H, Schaff W J 2006 Phys. Rev. Lett. 96 125505.

    [5]

    Shao J 2003 Acta Phys. Sin. 52 1743 (in Chinese) [邵军 2003 物理学报 52 1743.]

    [6]

    Bignazzi A, Grilli E, Radice M, Guzzi M, Castiglioni E 1996 Rev. Sci. Instrum. 67 666.

    [7]

    Barbillat J, Barny P L, Divay L, Lallier E, Grisard A, Deun R Van, Fias P 2003 Rev. Sci. Instrum. 74 4954.

    [8]

    Furstenberg R, Soares J A, White J O 2006 Rev. Sci. Instrum. 77 073101.

    [9]

    Liu M, Wang C, Zhou L 2019 Chin. Phys. B 28 037804.

    [10]

    Eich D, Schirmacher W, Hanna S, Mahlein K M, Fries P, Figgemeier H 2017 J. Electron. Mater. 46 5448.

    [11]

    Yang X, Arita M, Kako S, Arakawa Y 2011 Appl. Phys. Lett. 99 113106.

    [12]

    Deshpande S, Das A, Bhattacharya P 2013 Appl. Phys. Lett. 102 161114.

    [13]

    Basnet R, Sun C, Wu H, Nguyen H T, Rougieux F E, Macdonald D 2018 J. Appl. Phys. 124 243101.

    [14]

    Fuchs F, Lusson A, Wagner J, Koidl P 1989 Proc. SPIE 1145 323.

    [15]

    Reisinger A R, Roberts R N, Chinn S R, Myers II T H 1989 Rev. Sci. Instrum. 60 82.

    [16]

    Ullrich B, Brown G J 2012 Rev. Sci. Instrum. 83 016105.

    [17]

    Zhang Y G, Gu Y, Wang K, Fang X, Li A Z, Liu K H 2012 Rev. Sci. Instrum. 83 053106.

    [18]

    Tomm J W, Herrmann K H, Hoerstel W, Lindstaedt M, Kissel H, Fuchs F 1994 J. Cryst. Growth 138 175.

    [19]

    Lentz G, Magnea N, Mariette H, Tuffigo H, Feuillet G, Fontenille J, Ligeon E, Saminadayar K 1990 J. Cryst. Growth 101 195.

    [20]

    Fuchs F, Schneider H, Koidl P, Schwarz K, Walcher H, Triboulet R 1991 Phys. Rev. Lett. 67 1310.

    [21]

    Kasai J, Katayama Y 1995 Rev. Sci. Instrum. 66 3738.

    [22]

    Freeman J R, Brewer A, Beere H E, Ritchie D A 2011 J. Appl. Phys. 110 013103.

    [23]

    Ikezawa M, Sakuma Y, Zhang L, Sone Y, Mori T, Hamano T, Watanabe M, Sakoda K, Masumoto Y 2012 Appl. Phys. Lett. 100 042106.

    [24]

    Nguyen H T, Han Y, Ernst M, Fell A, Franklin E, Macdonald D 2015 Appl. Phys. Lett. 107 022101.

    [25]

    Shao J, Lu W, Lü X, Yue F, Li Z, Guo S, Chu J 2006 Rev. Sci. Instrum. 77 063104.

    [26]

    Shao J, Yue F, Lü X, Lu W, Huang W, Li Z, Guo S, Chu J 2006 Appl. Phys. Lett. 89 182121.

    [27]

    Shao J, Lü X, Lu W, Yue F, Huang W, Li N, Wu J, He L, Chu J 2007 Appl. Phys. Lett. 90 171101.

    [28]

    Shao J, Ma L, Lü X, Lu W, Wu J, Zha F, Wei Y, Li Z, Guo S, Yang J, He L, Chu J 2008 Appl. Phys. Lett. 93 131914.

    [29]

    Shao J, Chen L, Lü X, Lu W, He L, Guo S, Chu J 2009 Appl. Phys. Lett. 95 041908.

    [30]

    Shao J, Chen L, Lu W, Lü X, Zhu L, Guo S, He L, Chu J 2010 Appl. Phys. Lett. 96 121915.

    [31]

    Hempel M, Tomm J W, Yue F, Bettiati M A, Elsaesser T 2014 Laser Photonics Rev. 8 L59.

    [32]

    Morozov S V, Rumyantsev V V, Antonov A V, Maremyanin K V, Kudryavtsev K E, Krasilnikova L V, Mikhailov N N, Dvoretskii S A, Gavrilenko V I 2014 Appl. Phys. Lett. 104 072102.

    [33]

    Rumyantsev V V, Dubinov A A, Utochkin V V, Fadeev M A, Aleshkin V Y, Razova A A, Mikhailov N N, Dvoretsky S A, Gavrilenko V I, Morozov1 S V 2022 Appl. Phys. Lett. 121 182103.

    [34]

    Rumyantsev V V, Mazhukina K A, Utochkin V V, Kudryavtsev K E, Dubinov A A, Aleshkin V Y, Razova A A, Kuritsin D I, Fadeev M A, Antonov A V, Mikhailov N N, Dvoretsky S A, Gavrilenko V I, Teppe F, Morozov S V 2024 Appl. Phys. Lett. 124 161111.

    [35]

    Fadeev M A, Rumyantsev V V, Kadykov A M, Dubinov A A, Antonov A V, Kudryavtsev K E, Dvoretskii S A, Mikhailov N N, Gavrilenko V I, Morozov S V 2018 Opt. Express 26 12755.

    [36]

    Galeeva A V, Egorova S G, Chernichkin V I, Tamm M E, Yashina L V, Rumyantsev V V, Morozov S V, Plank H, Danilov S N, Ryabova L I, Khokhlov D R 2016 Semicond. Sci. Technol. 31 095010.

    [37]

    Motyka M, Sek G, Misiewicz J, Bauer A, Dallner M, Hofling S, Forchel A 2009 Appl. Phys. Express 2 126505.

    [38]

    Smołka T, Motyka M, Romanov V V, Moiseev K D 2022 Materials 15 1419.

    [39]

    Majkowycz K, Murawski K, Kopytko M 2024 Infrared Phy. Technol, 137 105126.

    [40]

    Arad-Vosk N, Beach R, Ron A, Templeman T, Golan Y, Sarusi G, Sa'ar A 2018 Nanotechnol. 29 115202.

    [41]

    Jang M, Litwin P M, Yoo S, McDonnell S J, Dhar N K, Gupta M C 2019 J. Appl. Phys. 126 105701.

    [42]

    Chen C, Chen F, Chen X, Deng B, Eng B, Jung D, Guo Q, Yuan S, Watanabe K, Taniguchi T, Lee M L, Xia F 2019 Nano Lett. 19 1488.

    [43]

    Chen C, Lu X, Deng B, Chen X, Guo Q, Li C, Ma C, Yuan S, Sung E, Watanabe K, Taniguchi T, Yang L, Xia F 2020 Sci. Adv. 6 eaay6134.

    [44]

    Zhu L, Shao J, Lü X, Guo S, Chu J 2011 J. Appl. Phys. 109 013509.

    [45]

    Zhu L, Song Y, Qi Z, Wang S, Zhu L, Chen X, Zha F, Guo S, Shao J 2016 J. Lumin. 169 132.

    [46]

    Shao J, Qi Z, Zhao H, Zhu L, Song Y, Chen X, Zha F X, Guo S, Wang S M 2015 J. Appl. Phys. 118 165305.

    [47]

    Chen X, Song Y, Zhu L, Wang S M, Lu W, Guo S, Shao J 2013 J. Appl. Phys. 113 153505.

    [48]

    Dou C, Chen X, Chen Q, Song Y, Ma N, Zhu L, Tan C S, Han L, Yu D, Wang S, Shao J 2022 Phys. Status Solidi B 259 2100418.

    [49]

    Yan B, Chen X, Zhu L, Pan W, Wang L, Yue L, Zhang X, Han L, Liu F, Wang S, Shao J 2019 Appl. Phys. Lett. 114 052104.

    [50]

    Chen X, Wu X, Yue L, Zhu L, Pan W, Qi Z, Wang S, Shao J 2017 Appl. Phys. Lett. 110 051903.

    [51]

    Chen X, Zhao H, Wu X, Wang L, Zhu L, Song Y, Wang S, Shao J 2019 Phys. Status Solidi B 256 1800694.

    [52]

    Zhu L, Shao J, Zhu L, Chen X, Qi Z, Lin T, Bai W, Tang X, Chu J 2015 J. Appl. Phys. 118 045707.

    [53]

    Zhu L, Shao J, Chen X, Li Y, Zhu L, Qi Z, Lin T, Bai W, Tang X, Chu J 2016 Phys. Rev. B 94 155201.

    [54]

    Chen X, Zhuang Q, Alradhi H, Jin Z M, Zhu L, Chen X, Shao J 2017 Nano Lett. 17 1545.

    [55]

    Chen X, Zhou Y, Zhu L, Qi Z, Xu Q, Xu Z, Guo S, Chen J, He L, Shao J 2014 Jpn. J. Appl. Phys. 53 082201.

    [56]

    Chen X, Xu Z, Zhou Y, Zhu L, Chen J, Shao J 2020 Appl. Phys. Lett. 117 081104.

    [57]

    Chen X, Xing J, Zhu L, Zha F X, Niu Z, Guo S, Shao J 2016 J. Appl. Phys. 119 175301.

    [58]

    Zhang X, Shao J, Chen L, Lu X, Guo S, He L, Chu J 2011 J. Appl. Phys. 110 043503.

    [59]

    Shao J, Lu W, Tsen G K O, Guo S, Dell J M 2012 J. Appl. Phys. 112 063512.

    [60]

    Zhu L, Liu S, Shao J, Chen X, Liu F, Hu Z, Chu J 2023 Chin. Phys. Lett. 40 077503.

    [61]

    Zha F, Shao J, Jiang J, Yang W Y 2007 Appl. Phys. Lett. 90 201112

    [62]

    Zhang B, Cai C, Jin S, Ye Z, Wu H, Qi Z 2014 Appl. Phys. Lett. 105 022109.

    [63]

    Deng Z, Chen B, Chen X, Shao J, Gong Q, Liu H, Wu J 2018 Infrared Phys. Technol. 90 115.

    [64]

    Zhuang Q D, Alradhi H, Jin Z M, Chen X R, Shao J, Chen X, Sanchez A M, Cao Y C, Liu J Y, Yates P, Durose K, Jin C J 2017 Nanotechnol. 28 105710.

    [65]

    Huang J, Ma W, Wei Y, Zhang Y, Cui K, Cao Y, Guo X, Shao J 2012 IEEE J. Quant. Electron. 48 1322.

    [66]

    Xing J, Zhang Y, Liao Y, Wang J, Xiang W, Hao H, Xu Y, Niu Z 2014 J. Appl. Phys. 116 123107.

    [67]

    Pan W, Zhang L, Zhu L, Li Y, Chen X, Wu X, Zhang F, Shao J, Wang S 2016 J. Appl. Phys. 120 105702.

    [68]

    Chen Q, Zhang L, Song Y, Chen X, Koelling S, Zhang Z, Li Y, Koenraad P M, Shao J, Tan C S, Wang S, Gong Q 2021 ACS Appl. Nano Mater. 4 897.

    [69]

    Xu Z, Chen J, Wang F, Zhou Y, Jin C, He L 2014 J. Cryst. Growth 386 220.

    [70]

    Furstenberg R, White J O, Dinan J H, Olson G L 2004 J. Electron. Mater. 33 714.

    [71]

    Dyksik M, Motyka M, Sęk G, Misiewicz J, Dallner M, Weih R, Kam M, Höfling S 2015 Nanoscale Res. Lett. 10 402.

    [72]

    Pepper B, Soibel A, Ting D, Hill C, Khoshakhlagh A, Fisher A, Keo S, Gunapala S 2019 Infrared Phys. Technol. 99 64

    [73]

    Kwan D C M, Kesaria M, Anyebe E A, Alshahrani D O, Delmas M, Liang B L, Huffaker D L 2021 Appl. Phys. Lett. 118 203102.

    [74]

    Chen X, Zhu L, Shao J 2019 Rev. Sci. Instrum. 90 093106.

    [75]

    Chen X, Zhu L, Zhang Y, Zhang F, Wang S, Shao J 2021 Phys. Rev. Appl. 15 044007.

    [76]

    Chen X, Wang M, Zhu L, Xie H, Chen L, Shao J 2023 Appl. Phys. Lett. 123 151105.

    [77]

    Shi Z, Yan D, Zhang Y, Zhang F, Chen Y, Gu C, Chen X, Shao J, Wang S, Shen X 2023 J. Alloys Compounds 947 169410.

    [78]

    Chen X and Shao J 2024 Microscopic mapping of infrared modulated photoluminescence spectroscopy with a spatial resolution of approximately 2 μm, to be published.

  • [1] 梁爱华, 王旭升, 李国荣, 郑嘹赢, 江向平, 胡锐. KxNa1–xNbO3:Pr3+铁电体的光致发光和应力发光性能. 物理学报, doi: 10.7498/aps.71.20220501
    [2] 张东, 娄文凯, 常凯. 半导体极性界面电子结构的理论研究. 物理学报, doi: 10.7498/aps.68.20191239
    [3] 王健, 谢自力, 张荣, 张韵, 刘斌, 陈鹏, 韩平. InN的光致发光特性研究. 物理学报, doi: 10.7498/aps.62.117802
    [4] 张红晨, 刘海, 乔文强, 李兴冀, 何世禹, V. V. Abraimof. 质子辐照对国产一字型保偏光纤损伤效应研究. 物理学报, doi: 10.7498/aps.61.034213
    [5] 梁志鹏, 董正超. 半导体/磁性d波超导隧道结中的散粒噪声. 物理学报, doi: 10.7498/aps.59.1288
    [6] 陈祥磊, 张杰, 杜淮江, 周先意, 叶邦角. 化合物半导体材料的正电子寿命计算. 物理学报, doi: 10.7498/aps.59.603
    [7] 高立, 张建民. 微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究. 物理学报, doi: 10.7498/aps.59.1263
    [8] 李素梅, 宋淑梅, 吕英波, 王爱芳, 吴爱玲, 郑卫民. 量子限制受主的光致发光研究. 物理学报, doi: 10.7498/aps.58.4936
    [9] 郑立仁, 黄柏标, 尉吉勇. 不同气氛下SiOx纳米线的制备及形貌、红外、光致发光研究. 物理学报, doi: 10.7498/aps.58.2306
    [10] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光. 物理学报, doi: 10.7498/aps.57.3661
    [11] 赵文彬, 张冠军, 严 璋. 半导体闪络引起的材料表面破坏现象研究. 物理学报, doi: 10.7498/aps.57.5130
    [12] 缪竞威, 王培禄, 朱洲森, 袁学东, 王 虎, 杨朝文, 师勉恭, 缪 蕾, 孙威立, 张 静, 廖雪花. 氮团簇离子注入单晶硅的光致发光谱研究. 物理学报, doi: 10.7498/aps.57.2174
    [13] 唐 斌, 邓 宏, 税正伟, 韦 敏, 陈金菊, 郝 昕. 掺AlZnO纳米线阵列的光致发光特性研究. 物理学报, doi: 10.7498/aps.56.5176
    [14] 王英龙, 卢丽芳, 闫常瑜, 褚立志, 周 阳, 傅广生, 彭英才. 具有窄光致发光谱的纳米Si晶薄膜的激光烧蚀制备. 物理学报, doi: 10.7498/aps.54.5738
    [15] 徐波, 余庆选, 吴气虹, 廖源, 王冠中, 方容川. 应力和掺杂对Mg:GaN薄膜光致发光光谱影响的研究. 物理学报, doi: 10.7498/aps.53.204
    [16] 黄凯, 王思慧, 施毅, 秦国毅, 张荣, 郑有炓. 内电场对纳米硅光致发光谱的影响. 物理学报, doi: 10.7498/aps.53.1236
    [17] 朱建敏, 沈文忠. 步进扫描时间分辨光谱及其在太阳电池光电导上的应用. 物理学报, doi: 10.7498/aps.53.3716
    [18] 张喜田, 肖芝燕, 张伟力, 高 红, 王玉玺, 刘益春, 张吉英, 许 武. 高质量纳米ZnO薄膜的光致发光特性研究. 物理学报, doi: 10.7498/aps.52.740
    [19] 邵 军. Ti掺杂ZnTe体材料的优化光致发光光谱. 物理学报, doi: 10.7498/aps.52.1743
    [20] 梁二军, 晁明举. 激光诱导多孔硅晶格畸变的Raman光谱和光致发光谱研究. 物理学报, doi: 10.7498/aps.50.2241
计量
  • 文章访问数:  121
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-13

/

返回文章
返回