搜索

x
中国物理学会期刊

力学约束对锂离子电池双层电极中锂扩散和应力的影响

CSTR: 32037.14.aps.74.20241275

Influence of mechanical constraints on Li diffusion and stress in bilayer electrode of lithium-ion batteries

CSTR: 32037.14.aps.74.20241275
PDF
HTML
导出引用
  • 锂离子电池中的电极总是处于特定的约束当中, 这些约束既包括电池内部不可避免的被动结构约束, 又包括一些新兴技术应用场景可能赋予的外部主动约束. 本文主要利用化学-力学双向耦合的基本假设建立描述双层电极结构的理论模型, 考虑4种不同强弱的理想化变形约束作为其边界条件, 并通过数值求解研究在充电过程中这些外部约束对双层电极中Li扩散和应力的影响. 从力学的角度, 所研究的双层电极结构存在侧向伸缩和弯曲变形两个自由度, 弱化的约束条件能够部分或完全激活这些应力释放机制, 从而降低电极结构整体的应力水平, 并提升结构的力学稳定性. 然而, 从电化学的角度, 电极结构的正向弯曲变形所产生的应力梯度会阻碍嵌Li过程, 强化的约束能够部分或完全抑制电极的正向弯曲, 使活性层内Li浓度更加均匀, 从而提高活性层的容量利用率. 这些结果不仅为进一步理解双层电极在更加真实或极端服役条件下的化学-力学响应提供理论参考, 还从设计的角度表明折中的外部约束有利于平衡电极的结构耐久性和电化学性能.

     

    Lithium-ion batteries (LIBs) are widely used in portable electronic devices, electric vehicles, and other fields. With the rapid development of its application fields, there is an urgent need to further improve its energy density and safety. In the charging/discharging process of the LIBs, the diffusion of Li will cause local volumetric change in the electrode material. The degradation and damage of the electrode material structure caused by diffusion-induced deformation is a major obstacle to the development of LIBs. Generally speaking, the electrode materials in LIBs are always subject to specific external constraints, including both inevitable passive structural constraints within the battery and external active constraints that may be imposed by emerging technology application scenarios, which can also affect the mechanical properties of the electrode materials. Therefore, a more in-depth understanding of the diffusion-induced stress and Li concentration changes in the electrode material is an engineering requirement for developing new material design paradigms to improve the overall performance of LIBs. In this work, a two-way diffusion-stress coupling model is used to discuss the effects of the four different levels of idealized deformation constraints on the Li concentration and stress in the bilayer plate electrode in the charging process through the numerical solution. From a mechanical perspective, the bilayer plate electrode structure has two degrees of freedom: lateral expansion and bending deformation. Weakened constraint conditions can partially or completely activate these stress release mechanisms, thereby reducing the overall stress level of the electrode structure and improving its mechanical stability. However, from an electrochemical perspective, the stress gradient generated by the forward bending deformation of the electrode structure can hinder the Li intercalation process. Enhanced constraints can partially or completely suppress the forward bending of the electrode, making the Li concentration in the active layer more uniform and thus improving the capacity utilization efficiency of the active layer. These results not only provide theoretical references for further understanding the chemical-mechanical response of the bilayer electrodes under more realistic or extreme service conditions, but also indicate from a design perspective that compromised external constraints are beneficial for balancing the structural durability and electrochemical performance of electrodes.

     

    目录

    /

    返回文章
    返回