搜索

x
中国物理学会期刊

霍尔推力器中电子碰撞及等离子体密度和磁场梯度激发的不稳定性

CSTR: 32037.14.aps.74.20241330

Instabilities triggered off by electron collision, plasma density gradient, and magnetic field gradient in Hall thruster

CSTR: 32037.14.aps.74.20241330
PDF
HTML
导出引用
  • 在霍尔推力器中, 电子漂移、电子碰撞, 以及等离子体密度、温度、磁场梯度所蕴含的自由能会驱动各种频率和波长的不稳定性. 不稳定性的存在会破坏等离子体的稳定放电, 削弱推力器与电源处理单元的匹配度, 降低推力器的性能. 基于此, 本文利用基于流体模型推导的色散关系研究了霍尔推力器中由电子碰撞、等离子体密度和磁场梯度驱动的不稳定性. 结果表明: 1)在考虑电子惯性、电子与中性原子的碰撞, 以及电子\boldsymbolE \times \boldsymbolB漂移时能够在推力器近阳极区到羽流区内的任一轴向位置处激发不稳定性. 随着角向波数k_y的增大(k = 2\textπ /\lambda , \lambda 为波长), 模式将从由碰撞激发的低杂波不稳定性转变为离子声波不稳定性. 当k_y = 10 \text m^ - 1时, 最大增长率\gamma _\max 对应频率\omega _\textr随着碰撞频率\nu _\texten的增大而轻微减小; 当 k_y = 300 \text m^ - 1 时, \gamma _\max 对应的频率\omega _\textr以及最大频率\omega _\textrmax几乎不随碰撞频率变化. 不依赖于 k_y 的大小, 对于碰撞激发的不稳定性, 模式的增长率随着碰撞频率的增大而增大. 2) 同时考虑电子惯性、电子碰撞效应, 以及密度梯度时, 密度梯度对驱动不稳定性占主导作用. 模式的动力学行为不会随k_y的增大而变化, 但模式的本征值随k_y的增大而增大. 在密度梯度\kappa _\textN = 0的两侧, 由于密度梯度引起的抗磁性漂移频率\omega _\texts的符号发生了变化, 模式的本征值在\kappa _\textN = 0两侧有相反的变化趋势: 当\omega _*与\omega _\textr符号相反时, 密度梯度对不稳定性的激发有削弱作用(\kappa _\textN \gt 0); 当\omega _*与\omega _\textr符号相同时, 密度梯度对不稳定性的激发有增强作用(\kappa _\textN \lt 0). 3)在模型中同时考虑等离子体密度梯度、磁场梯度, 以及电子惯性和碰撞效应时, 模式本征值的变化依赖于电子的漂移频率, 以及密度和磁场梯度引起的抗磁性漂移频率的相对大小. 当仅包含密度梯度和磁场梯度时, 推力器放电通道内将出现稳定窗, 即增长率为0的区间; 包含电子惯性和碰撞效应后, 稳定窗消失.

     

    The free energy contained in electron drift, electron collision, and plasma density gradient, temperature, magnetic field gradient can trigger off the instabilities with different frequencies and wavelengths in hall thrusters. The instabilities will destroy the stable discharge of plasma, affecting the matching degree between the thruster and the power processing unit, and reducing the performance of the thruster. Based on this, the instabilities triggered off by electron collision, plasma density gradient, and magnetic field gradient in the hall thruster are studied by using dispersion relation derived from the fluid model. The results are shown below. 1) When in the model includes the effects of electron inertia, collision between electrons and neutral atoms, and electron drift, instability can be excited at any axial position from the near anode region to the plume region of the thruster. With the increase of azimuthal wavenumber k_y = 2\pi /\lambda , the lower-hybrid mode excited by electron collision transitions into the ion sound mode, where k_y = 2\textπ /\lambda , \lambda being the wave length. The real frequency \omega _\textr corresponding to the maximum growth rate \gamma _\max slightly decreases with collision frequency increasing for k_y = 10\text \text m^ - 1. However, the maximum real frequency and real frequency \omega _\textr corresponding to the maximum growth rate k_y = 300\text m^ - 1 will not change with collision frequency for k_y = 300\text \text m^ - 1. Independent of the value of k_y, the growth rate of mode triggered off by electron collision increases with collision frequency increasing. 2) The plasma density gradient effect plays a dominant role in triggering off instabilities when the electron inertia, electron-neutral collisions and plasma density gradient are simultaneously included in the model. The dynamic behavior of the model does not change with the increase of k_y, but the eigenvalue of the model increases with the k_y increasing. Since the sign of anti-drift frequency induced by the plasma density gradient is changed, the mode eigenvalues have the opposite change trend on both sides of point \kappa _\textN. When the sign of \omega _r and \omega _r are opposite, the density gradient effect has a stabilization effect on instability excitation (\kappa _\textN > 0). When the sign of \omega _\texts and \omega _\textr are the same, the density gradient effect enhances the excitation of instability (\kappa _\textN < 0). 3) If the plasma density gradient, magnetic field gradient, electron inertia and electron-neutral collisions are included in the dispersion, the mode eigenvalue relies on the electron drift frequency, and the diamagnetic drift frequency induced by the density gradient and magnetic field gradient. When the density gradient effect and the magnetic field gradient effect are considered, there is a stable window in the discharge channel. However, if the electron inertia and electron-neutral collisions are also included, the stable window will disappear.

     

    目录

    /

    返回文章
    返回