搜索

x
中国物理学会期刊

质子累积辐照效应对CMOS图像传感器饱和输出的影响

CSTR: 32037.14.aps.74.20241352

Effect of proton cumulative radiation on saturation output in CMOS image sensors

CSTR: 32037.14.aps.74.20241352
PDF
HTML
导出引用
  • 本文通过辐照实验和TCAD仿真, 研究了质子累积辐照导致四晶体管钳位光电二极管(4T PPD)CMOS图像传感器的饱和输出变化机理. 实验采用的质子能量为12 MeV和60 MeV, 最高质子注量为2×1012 cm–2. 实验结果表明: 12 MeV和60 MeV质子最高注量辐照后分别导致转换增益增大8.2%和7.3%, 满阱容量分别减小7.3%和3.8%. 饱和输出在12 MeV质子辐照下变化趋势不显著, 在60 MeV质子辐照下增大3%. 在TCAD仿真中, 建立了单个三维4T PPD像元模型, 开展了质子累积辐照效应仿真来分析损伤机理. 仿真结果表明像元饱和输出的变化由满阱容量、复位晶体管的物理特性和浮置扩散区的电容决定, 但它们具有不同的影响. 具体而言, 满阱容量的降低导致饱和输出减小, 而复位晶体管的辐照效应导致饱和输出增大. 辐照导致浮置扩散区的电容减小, 从而使转换增益增大, 进而饱和输出增大. 上述工作较为全面地揭示和分析了辐照后饱和输出的变化机理, 研究成果对CMOS图像传感器的辐射损伤分析具有一定的指导意义.

     

    Complementary metal oxide semiconductor (CMOS) image sensors have been increasingly widely used in the field of radiation environments due to their numerous advantages, and their radiation effects have also attracted much attention. Some experimental studies have shown that the saturation output of CMOS image sensors decreases after irradiation, while others have reported that it increases. In this work, the further in-depth research on the inconsistent results is conducted based on the proton irradiation experiments and TCAD simulations, and the degradation mechanism in full well capacity, conversion factor, and saturation output of the 4T pinned photodiode (PPD) CMOS image sensors due to proton cumulative radiation effects are also analyzed. In experiments, the sensors are irradiated by 12 MeV and 60 MeV protons with a fluence up to 2× 1012 cm–2. The sensors are unbiased during irradiation. The experimental results show that proton irradiation at 12 MeV and 60 MeV result in an increase of 8.2% and 7.3% in conversion factor, respectively, and a decrease of 7.3% and 3.8% in full well capacity, respectively. The saturation output shows no significant change trend under 12 MeV proton irradiation, but increases by 3% under 60 MeV proton irradiation. In the TCAD simulation, a three-dimensional 4T PPD pixel model is constructed. A simulation method that combines the trap and gamma radiation model in TCAD with the mathematical model of minority carrier lifetime is used to simulate global and local cumulative proton irradiation in order to analyze the degradation mechanism. It is proposed that the degradation of saturation output at the pixel level is determined by the full well capacity of PPD, the physical characteristics of the reset transistor and the capacitance of floating diffusion, but they have opposite effects. Proton irradiation leads to the accumulation of oxide-trapped positive charges in the shallow trench isolation on both sides of PPD, resulting in the formation of leakage current path in silicon, thereby reducing the full well capacity. A decrease in full well capacity leads to a decrease in saturation output. While, the radiation effect of the reset transistor causes the potential of floating diffusion (FD) to increase during the FD reset phase, further leading to an increase in saturation output. The irradiation causes the capacitance of the floating diffusion to decrease, resulting in an increase in conversion factor and consequently increasing the saturation output. The difference in radiation sensitivity among the three influence factors at the pixel level may result in a decrease or increase in saturation output with proton fluence increasing. The above work comprehensively reveals and analyzes the mechanisms of degradation in full well capacity, conversion factor and saturation output after irradiation, and the research results have certain guiding significance for analyzing the radiation damage to CMOS image sensors.

     

    目录

    /

    返回文章
    返回