搜索

x
中国物理学会期刊

S, Se共掺杂Si光电特性的第一性原理计算分析

CSTR: 32037.14.aps.74.20241434

First principles study of photoelectric properties of (S, Se) co-doped Si

CSTR: 32037.14.aps.74.20241434
PDF
PDF English Version
HTML
导出引用
  • 基于第一性原理研究了S, Se单掺杂以及共掺杂Si的光电特性, 对掺杂前后晶体的几何结构、稳定性、能带结构和电子态密度以及光学性质进行比较分析. 计算结果表明, S掺杂Si与Se掺杂Si的光电特性极其相似, 其禁带中均出现一条新的杂质能级, 主要由S的3s态与Se的4s态电子形成, 杂质能级的形成促进低能光子的吸收, 增大了掺杂Si材料在近红外波段的光吸收率; 与单晶硅相比, S掺杂Si与Se掺杂Si的光吸收谱, 在0.6 eV处出现了一个新的峰值, 该峰值正是由电子从杂质能级向导带跃迁产生. S, Se共掺杂Si在工作温度下表现出良好的稳定性; 价带与导带之间出现两条杂质能级, 分别由S的3s态与Se的4s态电子形成; S, Se共掺杂Si的光吸收率在低能区较单掺杂Si有较大提升, 新增吸收峰出现在0.65 eV处, 形成原因与单掺杂相似. 然而, 由于两条杂质能带间的间接跃迁过程, 共掺杂Si在低能区的吸收峰更大. 且与相同浓度的单掺杂Si相比, S, Se共掺杂Si的光吸收率在0.81—1.06 eV范围内明显提高.

     

    In order to provide more accurate theoretical guidance for improving photoelectric properties of chalcogens doped silicon, the lattice structure, stability, band structure, density of state and optical properties of (S, Se) co-doped silicon are systematically investigated based on the first principles, and the related properties are compared with those of S-doped and Se-doped silicon. The calculated results show that the photoelectric characteristics of S-doped Si and Se-doped Si are extremely similar to each other, with a new impurity band appearing in their bandgap. This new impurity band primarily results from the contributions of the 3s state electrons of S and the 4s state electrons of Se, promoting the absorption of low-energy photons and increasing the optical absorptivity of doped Si in the near infrared region. Compared with monocrystalline silicon, the S-doped Si and Se-doped Si have the optical absorption spectra, each with a new peak at 0.6 eV, which is caused by the transition of electrons from the impurity band to the conduction band. The (S, Se) co-doped Si exhibits good stability at operating temperature, and two impurity bands appear between the valence band and conduction band, which are formed by electrons from the 3s state of S and the 4s state of Se, respectively. The optical absorptivity of (S, Se) co-doped Si is greatly improved in the low energy region compared with that of single doped Si, with a new absorption peak appearing at 0.65 eV, similar to the formation observed in singly doped Si. However, due to the indirect transition process between two impurity energy bands, the absorption peak of (S, Se) co-doped Si is larger in the low energy region. Compared with S-doped silicon and Se-doped silicon with the same concentration, the (S, Se) co-doped Si has optical absorptivity that is significantly improved in the range from 0.81 eV to 1.06 eV. This study provides theoretical guidance for applying the (S, Se) co-doped Si to the field of photoelectron such as infrared photodetectors and solar cells.

     

    目录

    /

    返回文章
    返回