搜索

x
中国物理学会期刊

AlN:Er3+松树状纳米结构: 发光与磁性多功能材料

CSTR: 32037.14.aps.74.20241587

Pine-shaped AlN:Er3+ nanostructure: A multifunctional material with both luminescent and magnetic properties

CSTR: 32037.14.aps.74.20241587
PDF
HTML
导出引用
  • 采用直流电弧等离子体法, 以Al粉和Er2O3粉为原料, 在氮气环境下, 成功制备出了具有松树状纳米结构的Er3+掺杂AlN (AlN:Er3+)材料. 通过X射线衍射、X射线光电子能谱、能量色散光谱、扫描电子显微镜、透射电子显微镜和高分辨率透射电子显微镜的分析, 详细测定了松树状纳米结构的成分、形貌特征和显微结构. 结果显示, 该材料呈现出典型的六方纤锌矿晶体结构, 其形态由主干与分支纳米线交织而成, 且证实Er3+成功掺入其晶格中. 光致发光光谱显示, AlN:Er3+能够发出强烈的绿光(~548 nm), 并伴有多个发光峰, 分别对应于Er3+内层4f电子跃迁的特征发光峰. 根据不同温度下热耦合能级(2H11/2/4S3/24I15/2)发光光谱强度的比值, 在温度为293 K时获得最高相对灵敏度, 为1.9×10–2 K–1. 磁学测量表明, AlN:Er3+显现出明显的室温铁磁性. 通过第一性原理计算后发现其磁矩主要由Al空位周围N原子的2p轨道电子自旋极化产生. AlN:Er3+松树状纳米结构在光电器件、温敏传感器以及稀磁半导体等多个领域展现出潜在的应用前景.

     

    Erbium-doped aluminum nitride (AlN:Er3+) pine-shaped nanostructures are synthesized, through a direct reaction between aluminum (Al) and erbium oxide (Er2O3) mixed powders in a nitrogen (N2) atmosphere, by using a direct current arc discharge plasma method. X-ray diffraction (XRD) analysis reveals that the diffraction peaks of AlN:Er3+ shift towards lower angles for the doped sample compared with those of undoped AlN, indicating lattice expansion due to Er3+ incorporation. X-ray photoelectron spectroscopy (XPS) confirms that Al, N, and Er are coexistent, while energy-dispersive X-ray spectroscopy (EDS) quantitatively shows that the atomic ratio for Al:N:Er is about 46.9∶52.8∶0.3. The nanostructures, resembling pine trees, are measured to be 5–10 μm in height and 1–3 μm in width, with branch nanowires extending 500 nm–1 μm in length and 50–100 nm in diameter. These branches, radiating at about 60° from the main trunk, are found to grow along the 100 direction of wurtzite-structured AlN, as evidenced by high-resolution transmission electron microscopy (HRTEM) showing lattice spacing of 0.27 nm corresponding to the (100) plane. Photoluminescence studies identify distinct emission peaks in the visible region (527, 548, and 679 nm) and near-infrared region (801, 871, and 977 nm), which is attributed to intra-4f electron transitions of Er3+ ions. The average lifetime of the excited state at 548 nm is measured to be 9.63 μs, slightly shorter than those of other Er3+-doped materials. The nanostructures demonstrate that the superior temperature sensing capability possesses a maximum relative sensitivity of 1.9×10–2 K–1 at 293 K, based on the fluorescence intensity ratio of thermal-coupled levels (2H11/2/4S3/2). Magnetic characterization reveals that the room-temperature ferromagnetism has a saturation magnetization of 0.055 emu/g and a coercive field of 49 Oe, with a Curie temperature exceeding 300 K, which shows the potential for room-temperature spintronic applications. First-principle calculations attribute the observed ferromagnetism to Al vacancies, whose formation energy is significantly reduced by Er doping, leading to a high concentration of Al vacancies. These findings highlight the potential of AlN:Er3+ pine-shaped nanostructures in various applications, including optoelectronics, temperature sensing, and dilute magnetic semiconductors.

     

    目录

    /

    返回文章
    返回