搜索

x
中国物理学会期刊

镜像电荷对低能离子在菱形微孔中传输的影响

CSTR: 32037.14.aps.74.20241677

Influence of image charges on the transport of low-energy ions in rhombic micropores

CSTR: 32037.14.aps.74.20241677
PDF
HTML
导出引用
  • 本文进行了1 keV \textN_2^ + 离子束穿越完全放电的白云母微孔膜实验, 测量了0°倾角下离子束入射初期的出射离子二维角分布图. 将离子速度对通道壁介电响应的影响引入镜像电荷力表达式, 对离子在菱形通道内所受镜像电荷力进行了多阶修正. 采用不同近似情况下的镜像电荷力对实验进行了模拟计算, 结果表明离子速度对通道壁介电响应的影响会使镜像电荷力降低. 对比对镜像电荷力进行多阶修正前后的模拟结果, 修正后的结果更接近实验值. 模拟计算出的穿透离子图像和实验测得的图像形状基本吻合, 均未出现体现成型效应的矩形. 但在穿透率和半高宽方面存在差距, 实验二维角分布半高宽比计算结果大, 且实验穿透率明显小于计算结果. 我们分析了模拟计算中的几个可能影响, 评估了束流的真实状态以及束流与微孔之间的夹角等因素对模拟和实验之间的差异的影响. 束流发散度和束流与微孔间的夹角会对模拟结果产生较大影响, 但是这些因素导致的模拟结果与实验出射离子角分布的差别还不够. 本工作提供了离子束作为探针进行微孔表面介电响应研究的可能性.

     

    The study of low-energy, high-charge-state ions traversing insulating nanochannels has focused on the guiding effects due to the deposition of charge, while experimental and theoretical research on the influence of image charge forces caused by the polarization of the channel walls during ion transmission is relatively scarce. In this work, the experiments on 1-keV \textN_2^ + ion beams passing through muscovite microporous membranes are conducted by combining the theoretical method. Under the condition of complete discharge of the microporous membrane, the two-dimensional angular distribution of ejected ions at the initial stage of ion beam incidence at a zero-degree inclination is measured. In previous simulation calculations, first-order image force approximation and static approximation are used to calculate the image charge forces so as to simplify the calculation process. It is found that the results obtained from these calculations are still different from the experimental results. Therefore, we refine the calculation formula for image charge forces by taking into account the full effect of these forces. In previous studies of image charge forces, the influence of ion velocity on the polarization of the channel walls was neglected. The surface dielectric response theory of the image force experienced by ions within the micropores, which depends on ion velocity and the distance between the ion and the channel wall, is used to simulate and compare with the experimental results. The influence of image charge forces caused by surface dielectric response due to ion velocity on the angular distribution of ejected ions is studied. The discrepancies between the simulated and experimental two-dimensional angular distributions are found, showing that the experimental results have a wider half-height width than the simulated results.
    To explore the effects of beam divergence and the angle between the micropore axis and the beam on ion penetration and the two-dimensional angular distribution of ejected ions, simulation calculations for 1 keV \textN_2^ + under different beam conditions are conducted, with the third-order dynamic image charge forces considered. The several potential influences in the simulation calculations are analyzed, and the influences of the true state of the beam and the angle between the beam and the micropore on the difference between simulation and experiment are assessed. This work provides the possibility for studying the surface dielectric response of micropores by using ion beams as probes.

     

    目录

    /

    返回文章
    返回