搜索

x
中国物理学会期刊

基于PVDF-EtP纳米纤维膜的压电性能及其在压力传感器中的应用

CSTR: 32037.14.aps.74.20241680

Piezoelectric properties of PVDF-EtP nanofiber membrane and its application in pressure sensors

CSTR: 32037.14.aps.74.20241680
PDF
HTML
导出引用
  • 近年来, 聚偏氟乙烯(PVDF)基纳米纤维膜由于其优异的压电性能, 成为了传感器、能量采集器等应用中的重要材料. 然而, PVDF膜的压电性能仍受限于其本身的结构和材料特性, 因此, 本文研究了填料掺杂驻极体纳米颗粒(EtP)对PVDF纳米纤维膜性能的影响. 实验采用静电纺丝技术, 将不同浓度的填料掺杂到PVDF纳米纤维膜中, 发现适量的填料掺杂可以显著提高膜的压电性能. 此外, 填料的加入提高了PVDF纳米纤维膜电输出性能的稳定性. 实验结果表明, 在PVDF溶液中添加不同质量分数的填料, 例如质量分数为1%, 1.5%和2%的驻极体颗粒, 并通过静电纺丝制备纳米复合纳米纤维膜, 可以显著提高其在20 N测试压力下的电输出性能. 此外, 增加膜面积和施加的压力可以进一步提高它们的电输出性能. 本文还提出了一种高效的信号处理方法, 通过FIR数字低通滤波去除高频噪声、平滑先验法消除基线漂移, 并改进AMPD算法精确检测压电信号中的主波峰位置与特性, 从而提高信号的稳定性与特征提取准确性. 结合本文实验, 填料掺杂和静电纺丝技术的结合为提高PVDF纳米纤维膜的性能提供了一种简单有效的方法, 为其在各个领域的应用提供了新的可能性和广阔的前景.

     

    In recent years, polyvinylidene fluoride (PVDF)-based nanofiber membranes, as key materials for applications in sensors, energy harvesters, and flexible electronics, have received significant attention due to their excellent piezoelectric properties. However, the research on the piezoelectric performance of PVDF membranes is still limited because of their intrinsic structure and material characteristics. Therefore, in this work, the effects of filler doping on the properties of PVDF nanofiber membranes are investigated to enhance their piezoelectric performance and stability. Using electrospinning technology, electret particles are incorporated into PVDF nanofiber membranes at different concentrations (e.g. 1%, 1.5%, and 2%). Characterization tests of the composite nanofiber membranes, such as scanning electron microscopy (SEM) and X-ray diffraction (XRD), reveal that the doping of electret particles can increase the average fiber diameter and enhance the β-phase content. In the piezoelectric performance tests, the piezoelectric sensors made of nanofiber membranes doped with electric particles show significant improvement in electrical output at a test pressure of 20 N. Furthermore, increasing the membrane area and using higher pressure can further enhance the electrical output. These results show that the piezoelectric properties of PVDF membranes can be effectively improved by appropriately doping electric particles. Stability tests carried out three months after sensor was fabricated shows that the electrical output stability of the piezoelectric sensors containing electric particles has been significantly improved. Additionally, an efficient signal processing method is proposed, with an FIR digital low-pass filter used to remove high-frequency noise. This method is not only a smoothing prior method to eliminate baseline drift, but also an improved AMPD algorithm to accurately detect the peak position and features of the piezoelectric signal. This method can significantly enhance the stability and accuracy of signal feature extraction. All in all, this study presents a simple and effective approach to improving the piezoelectric performance and electrical output stability of PVDF nanofiber membranes through the combination of filler doping and electrospinning technology. This method not only optimizes the performance of PVDF-based composites but also provides new insights into and technical support for their broad applications in energy collection, smart sensors, flexible electronic devices, and other fields.

     

    目录

    /

    返回文章
    返回