-
电介质激光加速器作为一种微型加速器, 其结构设计直接影响加速粒子束的能量增益和束流品质. 多数设计基于波长约1 μm的近红外激光驱动光源. 采用10倍波长的长波红外激光作为驱动光源, 有望在保持加速梯度的前提下获得更高束流品质. 受长距离加速限制, 相关波段下的结构设计仍较为缺失. 为此, 本研究提出一种基于深度学习技术的长波红外介电光栅加速器结构设计方法, 建立包含几何参数、材料性质、光场能量等多个参数的综合评估方法, 通过精准预测粒子能量增幅, 综合提取最优粒子能量增幅对应的结构参数以实现结构设计. 结果表明, 本研究所设计的光栅加速器粒子能量增幅高达99.5 keV, 同比增长19.9%, 可实现100%的传输效率, 束斑半径14.5 μm, 加速的平均粒子束电流为20.4 fA, 比近红外光栅结构高出了6.9倍, 且粒子束亮度与近红外光栅结构相当. 本研究为长波红外高净增益介电光栅加速器的设计提供了潜在的技术路线, 同时为复杂光电器件结构设计提供一个新思路.Dielectric laser accelerators (DLAs), as compact particle accelerators, rely critically on their structural design to determine both the energy gain and beam quality of accelerated bunches. Although most existing DLAs are driven by near-infrared lasers with a wavelength of approximately 1 μm, the use of long-wave infrared (LWIR) lasers at a wavelength ten times that of this wavelength indicates that it is possible to achieve excellent beam quality without sacrificing acceleration gradient. To address the lack of optimized structural designs in the LWIR band where long-distance acceleration poses unique challenges—we introduce a deep learning–based design method for LWIR dielectric grating accelerator structures. Our approach integrates geometric parameters, material properties, and optical-field energy metrics into a unified evaluation framework and uses a surrogate model to predict particle energy gain with high precision. Optimal structural parameters are then extracted to realize the final design. The simulation results show that the energy gain is 99.5 keV (a year-over-year increase of 19.9%), the transmission efficiency is 100%, the beam spot radius of 14.5 μm, and the average beam current is 20.4 fA, which is 6.9 times higher than similar near-infrared gratings, while maintaining equivalent beam brightness. This work provides a feasible technical route for designing high-netgain LWIR dielectric grating accelerators and a novel framework for optimizing the structure of complex optoelectronic devices.








下载: