This paper focuses on standardized fabrications of atomic vapor cells with multipass cells. For this purpose, we build a vacuum system that enables the sealing of the multipass-cavity-assisted cell under vacuum. Alkali atoms are prepared inside a glass holder, and the tip of the holder is broken by controlled collisions under vacuum. Atoms are then transferred to a cell glass body part by heating. Once enough atoms accumulate inside the glass part, buffer and quenching gases are filled into the system, and the glass body part is moved to contact the silicon wafer which is bonded with a Herriott-cavity. Then the cavity part and the glass part are sealed together using the anodic bonding technique. The resulting vapor cells provide enhanced measurement sensitivity and improved device standardization, which allows for seamless replacements of each other in practical applications. The performances of these cells are tested, including a test in a double-resonance alkali-metal atomic magnetometer. A magnetic field sensitivity of 95 fT/Hz
1/2 is achieved in a frequency range from 10 to 20 Hz with a multipass cell filled with 400 Torr (1 Torr = 1.33×10
2 Pa) N
2 and natural Rb atoms at 100 ℃. The technology and cells developed in this work are expected to have wide applications in atomic devices, especially in He magnetometers and nuclear-spin atomic co-magnetometers, which have special requirements for cell qualities.