搜索

x
中国物理学会期刊

真空封装含Herriott多反射腔原子气室及其在原子磁力仪中的应用

CSTR: 32037.14.aps.74.20250220

Atomic vapor cells with Herriott-cavity sealed under vacuum and their applications in atomic magnetometry

CSTR: 32037.14.aps.74.20250220
PDF
HTML
导出引用
  • 本文主要研究用于精密测量的含多反射腔原子气室的标准化制备方法: 一方面将Herriott多反射腔技术和阳极键合技术相结合, 另一方面在全真空条件下密封含多反射腔原子气室. 这样制备出的新型气室可以广泛应用于原子器件中, 在提升测量灵敏度的同时, 提高器件的标准化程度. 本文介绍这种原子气室的制备方法的同时, 还通过气室在磁光双共振碱金属原子磁力仪中的应用展示其工作潜能. 该示范展示了利用含22次反射的多反射腔, 充有400 Torr (1 Torr = 1.33×102 Pa) 氮气和自然丰度铷原子气室获得的磁共振信号, 并以此信号为基础在10—20 Hz的频率区间测得了95 fT/Hz1/2的磁场灵敏度. 之后, 我们将把基于这种技术制作的气室拓展到对气室质量要求较高的氦原子磁力仪和核自旋原子共磁力仪中.

     

    This paper focuses on standardized fabrications of atomic vapor cells with multipass cells. For this purpose, we build a vacuum system that enables the sealing of the multipass-cavity-assisted cell under vacuum. Alkali atoms are prepared inside a glass holder, and the tip of the holder is broken by controlled collisions under vacuum. Atoms are then transferred to a cell glass body part by heating. Once enough atoms accumulate inside the glass part, buffer and quenching gases are filled into the system, and the glass body part is moved to contact the silicon wafer which is bonded with a Herriott-cavity. Then the cavity part and the glass part are sealed together using the anodic bonding technique. The resulting vapor cells provide enhanced measurement sensitivity and improved device standardization, which allows for seamless replacements of each other in practical applications. The performances of these cells are tested, including a test in a double-resonance alkali-metal atomic magnetometer. A magnetic field sensitivity of 95 fT/Hz1/2 is achieved in a frequency range from 10 to 20 Hz with a multipass cell filled with 400 Torr (1 Torr = 1.33×102 Pa) N2 and natural Rb atoms at 100 ℃. The technology and cells developed in this work are expected to have wide applications in atomic devices, especially in He magnetometers and nuclear-spin atomic co-magnetometers, which have special requirements for cell qualities.

     

    目录

    /

    返回文章
    返回