搜索

x
中国物理学会期刊

双轴应变对单层Janus过渡金属硫族化合物热输运和热电性能的影响

CSTR: 32037.14.aps.74.20250295

Influence of biaxial strain effects on thermal transport and thermoelectric performance of Janus transition metal dichalcogenide monolayers

CSTR: 32037.14.aps.74.20250295
PDF
HTML
导出引用
  • Janus过渡金属硫族化物单分子层具有独特的晶体结构和物理化学性质, 在微纳尺度电子器件及热电转换领域具有巨大的应用潜力. 深入探索其热输运和热电性能对于实际应用至关重要. 本文采用基于密度泛函理论的第一性原理计算, 研究了拉伸应变对Janus过渡金属硫族化合物单分子层(PtSSe, PtTeSe, MoSSe, MoTeSe, WSSe和WTeSe)声子热输运性能和热电性能的影响. 对于热输运性能, 在0—10%的拉伸应变范围内, PtSSe, MoSSe和WSSe单分子层的晶格热导率单调减小; PtTeSe, MoTeSe和WTeSe单分子层的晶格热导率先增大后减小. 通过对声子模层面的深入分析, 发现声子寿命是影响晶格热导率在拉伸应变下变化的主导因素. 对于热电性能, 本研究发现PtTeSe单分子层表现出极佳的热电性能, 室温下其热电优值为0.91, 在10%的拉伸应变下, 热电优值达1.31. 700 K下, p型PtTeSe单分子层的热电优值高达3.96, n型PtTeSe单分子层的热电优值高达2.38. 本研究表明PtTeSe单分子层是具有潜力的热电材料, 应变工程是调控Janus过渡金属硫族化物单分子层热输运和热电性能的有效策略.

     

    Janus transition metal dichalcogenide monolayers, characterized by antisymmetric crystal structures and unique physical properties, show great potential applications in micro/nano-electronic devices and thermoelectrics. In this work, the strain-tuned phonon thermal transport and thermoelectric performance of six Janus transition metal dichalcogenide monolayers are systematically investigated by first-principles calculations. This study focuses on monolayers of PtSSe and PtTeSe with a 1T-phase crystal structure, as well as monolayers of MoSSe, MoTeSe, WSSe, and WTeSe with a 1H-phase crystal structure. For all these monolayers, first-principles calculations are performed using the open-source software Quantum ESPRESSO. The lattice thermal conductivity is obtained based on lattice dynamics and iterative solutions of the Boltzmann transport equation. The thermal conductivities of PtSSe, MoSSe, and WSSe monolayers are generally higher than those of PtTeSe, MoTeSe, and WTeSe. Acoustic phonons are responsible for the majority of thermal transport, contributing over 95%. Under unstrained conditions, monolayer PtSSe demonstrates a superior thermal conductivity of 104 W·m–1·K–1, making it advantageous for thermal management applications in electronic devices. Under tensile strain, the thermal conductivities of PtSSe, MoSSe, and WSSe monolayers exhibit a monotonic decrease trend; however, for PtTeSe, MoTeSe, and WTeSe monolayers, their thermal conductivities initially show an increase trend, followed by a subsequent decrease trend. Under a 10% tensile strain, the thermal conductivities of these six Janus monolayers all demonstrate a reduction exceeding 60%. Furthermore, this work provides a comprehensive analysis of the influences of strain on specific heat capacity, phonon group velocity, and phonon lifetime. The phonon mode-level analysis and cross-calculated thermal conductivity (with specific heat capacity, phonon group velocity, and phonon lifetime replaced by values under different strain conditions) reveal that phonon lifetime is the dominant factor governing thermal conductivity under strain. For electrical transport properties, calculations are performed using the Boltzmann transport equation based on deformation potential theory. At room temperature, the thermoelectric figure of merit (ZT) for PtTeSe is 0.91 without strain, which can be improved to 1.31 under 10% tensile strain. The ZT value reaches as high as 3.96 for p-type PtTeSe and 2.38 for n-type PtTeSe at 700 K, indicating that the PtTeSe monolayer is a highly promising thermoelectric material. Strain-induced enhancement in the thermoelectric performance of PtTeSe is facilitated by reducing lattice thermal conductivity and reconfigurating the band structure. This work demonstrates that strain engineering is an effective strategy for adjusting the thermal transport and thermoelectric properties of Janus transition metal dichalcogenide monolayers.

     

    目录

    /

    返回文章
    返回