-
高熵合金(HEAs)作为多主元合金的重要分支, 因其优异的力学性能与功能特性受到广泛关注. 本文聚焦含硅高熵合金中的有序-无序相变机制, 系统综述其热力学与动力学调控规律及其对材料性能的影响. 研究表明, 硅的引入通过优化原子尺寸匹配与混合焓, 实现高熵合金中有序相和无序相的匹配, 显著提升合金的机械以及物理化学性能. 同时, 制备工艺与温度/压力调控可通过影响相形成实现多相结构的协同强化. 通过成分设计与工艺优化, 含硅高熵材料在航空航天、能源及电子器件等领域展现出广阔应用潜力. 未来研究需进一步结合多尺度表征与理论模型, 揭示相变动态机制, 推动其工程化应用.
High-entropy alloys (HEAs), as a significant branch of multi-principal element alloys, have garnered extensive attention due to their exceptional mechanical and functional properties. This review focuses on the order-disorder phase transition mechanisms in silicon-based HEAs, systematically addressing the thermodynamic and kinetic regulation principles and their impact on material performance. Studies have demonstrated that the incorporation of silicon optimizes atomic size matching and mixing enthalpy, enabling the coordinated coexistence of ordered and disordered phases in high-entropy alloys, thereby significantly enhancing their mechanical and physicochemical properties. The evolution of ordered and disordered phases is critically governed by fabrication processes. Advanced fabrication techniques, such as laser cladding and powder metallurgy, alongside temperature/pressure modulation, enable precise control over phase formation and hierarchical structures, achieving synergistic strengthening through multiphase architectures. Rapid cooling techniques like laser cladding suppress nucleation and growth of brittle intermetallic compounds, favoring single-phase FCC structures. Conversely, controlled annealing treatments can induce phase transitions towards ordered BCC/B2 structures, enhancing high-temperature stability. Advanced techniques such as powder plasma arc additive manufacturing (PPA-AM) leverage rapid solidification to refine grain size and disperse second phases effectively. Thermodynamic drivers, particularly the competition between entropy and enthalpy quantified by the parameter Ω, alongside external stimuli like pressure, provide precise control over phase transformation pathways and final microstructures. Furthermore, silicon incorporation enhances functional properties, including elevated electrical resistivity, tailored magnetic responses, and improved high-temperature oxidation resistance through Al2O3/SiO2 layer formation. Despite these advancements, challenges remain in understanding atomic-scale dynamics of phase transitions and scaling up cost-effective manufacturing processes. Future efforts should integrate multiscale characterization, computational modeling, and performance validation under extreme conditions to accelerate the engineering applications of silicon-based HEAs in aerospace, energy storage, and electronic devices. -
图 1 (a)各种合金和HEAs的强度-塑性图以及含Si HEAs的数据; (b)不同的合金元素对HEAs延展性和拉伸强度的影响[14]
Fig. 1. (a) Strength-ductility diagram of various alloys and HEAs with the addition of the data of the Si-containing HEAs; (b) changes in the ductility and tensile strength with the addition of the different alloying elements in HEAs[14].
-
[1] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299
Google Scholar
[2] Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375-377 213
[3] Huang E W, Lee W J, Singh S S, Kumar P, Lee C Y, Lam T N, Chin H H, Lin B H, Liaw P K 2022 Mater. Sci. Eng. : R: Rep. 147 100645
Google Scholar
[4] Tsai M H, Yeh J W 2014 Mater. Res. Lett. 2 107
Google Scholar
[5] Chandrakar R, Chandraker S, Kumar A, Jaiswal A 2024 Mater. Res. Express 11 116512
Google Scholar
[6] Sohrabi M J, Kalhor A, Mirzadeh H, Rodak K, Kim H S 2024 Prog. Mater Sci. 144 101295
Google Scholar
[7] Wu Y, Li Z, Feng H, He S 2022 Materials 15 3992
Google Scholar
[8] Liu F F, Liaw P, Zhang Y 2022 Metals 12 501
Google Scholar
[9] Luan H W, Shao Y, Li J F, Mao W L, Han Z D, Shao C, Yao K F 2020 Scr. Mater. 179 40
Google Scholar
[10] 叶喜葱, 徐张洋, 王童, 徐东, 张文, 方东 2020 特种铸造及有色合金 40 1323
Ye X C, Xu Z Y, Wang T, Xu D, Zhang W, Fang D 2020 Spec. Cast. Nonferrous Alloys 40 1323
[11] Li Y T, Zhang P, Zhang J Y, Chen Z, Shen B L 2021 Corros. Sci. 190 109633
Google Scholar
[12] Kumar A, Chandrakar R, Chandraker S, Rao K R, Chopkar M 2021 J. Alloys Compd. 856 158193
Google Scholar
[13] Zhang Y T, Zhang M, Li D, Zuo T, Zhou K, Gao M C, Sun B, Shen T 2019 Metals 9 382
Google Scholar
[14] Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater Sci. 61 1
Google Scholar
[15] Lee H, Sharma A, Ahn B 2023 J. Alloys Compd. 947 169545
Google Scholar
[16] Gearhart C A 1990 Am. J. Phys. 58 468
Google Scholar
[17] Li Z Z, Zhao S T, Ritchie R O, Meyers M A 2019 Prog. Mater Sci. 102 296
Google Scholar
[18] Zhang Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534
Google Scholar
[19] Yang X H, Zhang Y 2012 Mater. Chem. Phys. 132 233
Google Scholar
[20] Yan X H, Liaw P K, Zhang Y 2021 Metall. Mater. Trans. A 52 2111
[21] Wu G, Liu C, Yan Y Q, Liu S D, Ma X Y, Yue S Y, Shan Z W 2024 Nat. Commun. 15 1223
Google Scholar
[22] Wu G, Liu S D, Wang Q, Rao J, Xia W Z, Yan Y Q, Eckert J, Liu C, Ma E, Shan Z W 2023 Nat. Commun. 14 3670
Google Scholar
[23] Miracle D B, Senkov O N 2017 Acta Mater. 122 448
Google Scholar
[24] Lei Z F, Liu X J, Wu Y, Wang H, Jiang S H, Wang S D, Hui X D, Wu Y D, Gault B, Kontis P, Raabe D, Gu L, Zhang Q H, Chen H W, Wang H T, Liu J B, An K, Zeng Q S, Nieh T G, Lu Z P 2018 Nature 563 546
Google Scholar
[25] Soni V, Gwalani B, Senkov O N, Viswanathan B, Alam T, Miracle D B, Banerjee R 2018 J. Mater. Res. 33 3235
Google Scholar
[26] Soni V, Senkov O N, Gwalani B, Miracle D B, Banerjee R 2018 Sci. Rep. 8 8816
Google Scholar
[27] Soni V, Gwalani B, Alam T, Dasari S, Zheng Y, Senkov O N, Miracle D, Banerjee R 2020 Acta Mater. 185 89
Google Scholar
[28] Huang X J, Miao J S, Luo A A 2018 J. Mater. Sci. 54 2271
[29] Huang X J, Miao J S, Luo A A 2022 Scr. Mater. 210 114462
Google Scholar
[30] Sundman B, Chen Q, Du Y 2018 J. Phase Equilib. Diffus. 39 678
Google Scholar
[31] Singh P, Johnson D D 2021 J. Mater. Res. 37 136
[32] Gu X Y, Zhuang Y X, Jia P 2022 Mater. Sci. Eng. A 840 142983
Google Scholar
[33] Cheng P, Zhao Y H, Xu X T, Wang S, Sun Y Y, Hou H 2020 Mater. Sci. Eng. A 772 138681
Google Scholar
[34] Zhu J M, Fu H M, Zhang H F, Wang A M, Li H, Hu Z Q 2010 Mater. Sci. Eng. A 527 7210
Google Scholar
[35] 林应征, 杨洪宇, 陈芳, 颜建辉 2023 材料热处理学报 44 69
Lin Y Z, Zheng Y H, Chen F, Yan J H 2023 Trans. Mater. Heat Treat. 44 69
[36] Babilas R, Łoński W, Boryło P, Kądziołka Gaweł M, Gębara P, Radoń A 2020 J. Magn. Magn. Mater. 502 166492
Google Scholar
[37] Zhang H, Pan Y, He Y Z 2011 J. Therm. Spray Technol. 20 1049
Google Scholar
[38] Zhang S Y, Han B, Li M Y, Zhang Q, Hu C Y, Jia C X, Li Y, Wang Y 2021 Surf. Coat. Technol. 417 127218
Google Scholar
[39] Santodonato L J, Liaw P K, Unocic R R, Bei H, Morris J R 2018 Nat. Commun. 9 4520
Google Scholar
[40] Torralba J M, Alvaredo P, García Junceda A 2020 Powder Metall. 63 227
Google Scholar
[41] Brif Y, Thomas M, Todd I 2015 Scr. Mater. 99 93
Google Scholar
[42] Han C J, Fang Q H, Shi Y S, Tor S B, Chua C K, Zhou K 2020 Adv. Mater. 32 1903855
Google Scholar
[43] Luo J, Wang J, Su C, Geng Y, Chen X 2024 J. Mater. Eng. Perform. 33 12413
Google Scholar
[44] Shun T T, Hung C H, Lee C F 2010 J. Alloys Compd. 493 105
Google Scholar
[45] Hazen R M, Navrotsky A 1996 Am. Mineral. 81 1021
Google Scholar
[46] Starenchenko S V 2012 Russ. Phys. J. 54 965
Google Scholar
[47] Ma Y M, Fan J T, Zhang L J, Zhang M D, Cui P, Dong W Q, Yu P F, Li Y C, Liaw P K, Li G 2018 Intermetallics 103 63
Google Scholar
[48] Ma L L, Wang L, Nie Z H, Wang F C, Xue Y F, Zhou J L, Cao T Q, Wang Y D, Ren Y 2017 Acta Mater. 128 12
Google Scholar
[49] Ji C W, Ma A, Jiang J H 2022 J. Alloys Compd. 900 163508
Google Scholar
[50] Kumar A, Dhekne P, Swarnakar A K, Chopkar M 2018 Mater. Res. Express 6 026532
Google Scholar
[51] Lin T X, Feng M Y, Lian G F, Lu H, Chen C R, Huang X 2024 Mater. Charact. 216 114246
Google Scholar
[52] Li Z, Taheri M, Torkamany P, Heidarpour I, Torkamany M J 2024 Vacuum 219 112749
Google Scholar
[53] Shang X L, Wang Z J, He F, Wang J C, Li J J, Yu J K 2017 Sci. China Technol. Sci. 61 189
[54] Wang S, Wu Y, Gesmundo F, Niu Y 2008 Oxid. Met. 69 299
Google Scholar
[55] Jiang S M, Xu C Z, Li H Q, Liu S C, Gong J, Sun C 2010 Corros. Sci. 52 435
Google Scholar
[56] Zuo T T, Li R B, Ren X J, Zhang Y 2014 J. Magn. Magn. Mater. 371 60
Google Scholar
[57] Wen J J, Liu X, Li Z H, Li W W 2023 J. Alloys Compd. 934 167622
Google Scholar
[58] Su Y, Lei X C, Chen W J, Su Y P, Liu H W, Ren S Y, Tong R Y, Lin Y T, Jiang W J, Liu X Z, Su D, Zhang Y G 2024 Chem. Eng. J. 500 157197
Google Scholar
[59] Lei X C, Wang Y Y, Wang J Y, Su Y, Ji P X, Liu X Z, Guo S N, Wang X F, Hu Q M, Gu L, Zhang Y G, Yang R, Zhou G, Su D 2023 Small Methods 8 2300754
计量
- 文章访问数: 196
- PDF下载量: 33
- 被引次数: 0