搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含硅高熵材料中的有序-无序相变

路辛夷 张勇

引用本文:
Citation:

含硅高熵材料中的有序-无序相变

路辛夷, 张勇

Order-disorder phase transition in silicon-containing high-entropy materials

LU Xinyi, ZHANG Yong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 高熵合金(HEAs)作为多主元合金的重要分支, 因其优异的力学性能与功能特性受到广泛关注. 本文聚焦含硅高熵合金中的有序-无序相变机制, 系统综述其热力学与动力学调控规律及其对材料性能的影响. 研究表明, 硅的引入通过优化原子尺寸匹配与混合焓, 实现高熵合金中有序相和无序相的匹配, 显著提升合金的机械以及物理化学性能. 同时, 制备工艺与温度/压力调控可通过影响相形成实现多相结构的协同强化. 通过成分设计与工艺优化, 含硅高熵材料在航空航天、能源及电子器件等领域展现出广阔应用潜力. 未来研究需进一步结合多尺度表征与理论模型, 揭示相变动态机制, 推动其工程化应用.
    High-entropy alloys (HEAs), as a significant branch of multi-principal element alloys, have garnered extensive attention due to their exceptional mechanical and functional properties. This review focuses on the order-disorder phase transition mechanisms in silicon-based HEAs, systematically addressing the thermodynamic and kinetic regulation principles and their impact on material performance. Studies have demonstrated that the incorporation of silicon optimizes atomic size matching and mixing enthalpy, enabling the coordinated coexistence of ordered and disordered phases in high-entropy alloys, thereby significantly enhancing their mechanical and physicochemical properties.The evolution of ordered and disordered phases is critically governed by fabrication processes. Advanced fabrication techniques, such as laser cladding and powder metallurgy, alongside temperature/pressure modulation, enable precise control over phase formation and hierarchical structures, achieving synergistic strengthening through multiphase architectures. Rapid cooling techniques like laser cladding suppress nucleation and growth of brittle intermetallic compounds, favoring single-phase FCC structures. Conversely, controlled annealing treatments can induce phase transitions towards ordered BCC/B2 structures, enhancing high-temperature stability. Advanced techniques such as powder plasma arc additive manufacturing (PPA-AM) leverage rapid solidification to refine grain size and disperse second phases effectively. Thermodynamic drivers, particularly the competition between entropy and enthalpy quantified by the parameter Ω, alongside external stimuli like pressure, provide precise control over phase transformation pathways and final microstructures.Furthermore, silicon incorporation enhances functional properties, including elevated electrical resistivity, tailored magnetic responses, and improved high-temperature oxidation resistance through Al2O3/SiO2 layer formation. Despite these advancements, challenges remain in understanding atomic-scale dynamics of phase transitions and scaling up cost-effective manufacturing processes. Future efforts should integrate multiscale characterization, computational modeling, and performance validation under extreme conditions to accelerate the engineering applications of silicon-based HEAs in aerospace, energy storage, and electronic devices.
  • 图 1  (a)各种合金和HEAs的强度-塑性图以及含Si HEAs的数据; (b)不同的合金元素对HEAs延展性和拉伸强度的影响[14]

    Fig. 1.  (a) Strength-ductility diagram of various alloys and HEAs with the addition of the data of the Si-containing HEAs; (b) changes in the ductility and tensile strength with the addition of the different alloying elements in HEAs[14].

    图 2  基于混合焓$\Delta H{\text{mix}}$和原子尺寸差δ的相形成图[18]

    Fig. 2.  Phase formation map based on the enthalpy of mixing $\Delta H{\text{mix}}$ and the atomic size difference δ[18].

    图 3  多元合金中参数Ωδ之间的关系[19]

    Fig. 3.  Relationship between parameters Ω and δ for multi-component alloys[19].

    图 4  无序(A2)和有序(B2)BCC晶体结构的图示[30]

    Fig. 4.  Illustration of disordered (A2) and ordered (B2) BCC crystal structure[30].

    图 5  激光熔覆示意图[38]

    Fig. 5.  Schematic diagram of laser cladding[38].

    图 6  PPA-AM制备高熵合金示意图[43]

    Fig. 6.  Schematic diagram of high-entropy alloys fabricated by PPA-AM[43].

    图 7  (a)室温拉伸曲线; (b) BCC阶段强化[32]

    Fig. 7.  (a) Room-temperature tensile curves; (b) strengthening by the BCC phase[32].

    图 8  (a) CoCrFeMnNiSix高熵合金涂层的动电位极化曲线; (b)电化学腐蚀参数[51]

    Fig. 8.  (a) Potentiodynamic polarization curves of CoCrFeMnNiSix high-entropy-alloy coatings; (b) parameters of electrochemical corrosion[51].

    图 9  AlCoCrFeNiSix HEAs在1100 ℃下200 h的氧化行为示意图 (a) Si0; (b) Si0.2; (c) Si≥0.5[11]

    Fig. 9.  Schematic diagram of oxidation behavior for AlCoCrFeNiSix HEAs at 1100 ℃ for 200 h: (a) Si0; (b) Si0.2; (c) Si≥0.5[11].

  • [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375-377 213

    [3]

    Huang E W, Lee W J, Singh S S, Kumar P, Lee C Y, Lam T N, Chin H H, Lin B H, Liaw P K 2022 Mater. Sci. Eng. : R: Rep. 147 100645Google Scholar

    [4]

    Tsai M H, Yeh J W 2014 Mater. Res. Lett. 2 107Google Scholar

    [5]

    Chandrakar R, Chandraker S, Kumar A, Jaiswal A 2024 Mater. Res. Express 11 116512Google Scholar

    [6]

    Sohrabi M J, Kalhor A, Mirzadeh H, Rodak K, Kim H S 2024 Prog. Mater Sci. 144 101295Google Scholar

    [7]

    Wu Y, Li Z, Feng H, He S 2022 Materials 15 3992Google Scholar

    [8]

    Liu F F, Liaw P, Zhang Y 2022 Metals 12 501Google Scholar

    [9]

    Luan H W, Shao Y, Li J F, Mao W L, Han Z D, Shao C, Yao K F 2020 Scr. Mater. 179 40Google Scholar

    [10]

    叶喜葱, 徐张洋, 王童, 徐东, 张文, 方东 2020 特种铸造及有色合金 40 1323

    Ye X C, Xu Z Y, Wang T, Xu D, Zhang W, Fang D 2020 Spec. Cast. Nonferrous Alloys 40 1323

    [11]

    Li Y T, Zhang P, Zhang J Y, Chen Z, Shen B L 2021 Corros. Sci. 190 109633Google Scholar

    [12]

    Kumar A, Chandrakar R, Chandraker S, Rao K R, Chopkar M 2021 J. Alloys Compd. 856 158193Google Scholar

    [13]

    Zhang Y T, Zhang M, Li D, Zuo T, Zhou K, Gao M C, Sun B, Shen T 2019 Metals 9 382Google Scholar

    [14]

    Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater Sci. 61 1Google Scholar

    [15]

    Lee H, Sharma A, Ahn B 2023 J. Alloys Compd. 947 169545Google Scholar

    [16]

    Gearhart C A 1990 Am. J. Phys. 58 468Google Scholar

    [17]

    Li Z Z, Zhao S T, Ritchie R O, Meyers M A 2019 Prog. Mater Sci. 102 296Google Scholar

    [18]

    Zhang Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534Google Scholar

    [19]

    Yang X H, Zhang Y 2012 Mater. Chem. Phys. 132 233Google Scholar

    [20]

    Yan X H, Liaw P K, Zhang Y 2021 Metall. Mater. Trans. A 52 2111

    [21]

    Wu G, Liu C, Yan Y Q, Liu S D, Ma X Y, Yue S Y, Shan Z W 2024 Nat. Commun. 15 1223Google Scholar

    [22]

    Wu G, Liu S D, Wang Q, Rao J, Xia W Z, Yan Y Q, Eckert J, Liu C, Ma E, Shan Z W 2023 Nat. Commun. 14 3670Google Scholar

    [23]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar

    [24]

    Lei Z F, Liu X J, Wu Y, Wang H, Jiang S H, Wang S D, Hui X D, Wu Y D, Gault B, Kontis P, Raabe D, Gu L, Zhang Q H, Chen H W, Wang H T, Liu J B, An K, Zeng Q S, Nieh T G, Lu Z P 2018 Nature 563 546Google Scholar

    [25]

    Soni V, Gwalani B, Senkov O N, Viswanathan B, Alam T, Miracle D B, Banerjee R 2018 J. Mater. Res. 33 3235Google Scholar

    [26]

    Soni V, Senkov O N, Gwalani B, Miracle D B, Banerjee R 2018 Sci. Rep. 8 8816Google Scholar

    [27]

    Soni V, Gwalani B, Alam T, Dasari S, Zheng Y, Senkov O N, Miracle D, Banerjee R 2020 Acta Mater. 185 89Google Scholar

    [28]

    Huang X J, Miao J S, Luo A A 2018 J. Mater. Sci. 54 2271

    [29]

    Huang X J, Miao J S, Luo A A 2022 Scr. Mater. 210 114462Google Scholar

    [30]

    Sundman B, Chen Q, Du Y 2018 J. Phase Equilib. Diffus. 39 678Google Scholar

    [31]

    Singh P, Johnson D D 2021 J. Mater. Res. 37 136

    [32]

    Gu X Y, Zhuang Y X, Jia P 2022 Mater. Sci. Eng. A 840 142983Google Scholar

    [33]

    Cheng P, Zhao Y H, Xu X T, Wang S, Sun Y Y, Hou H 2020 Mater. Sci. Eng. A 772 138681Google Scholar

    [34]

    Zhu J M, Fu H M, Zhang H F, Wang A M, Li H, Hu Z Q 2010 Mater. Sci. Eng. A 527 7210Google Scholar

    [35]

    林应征, 杨洪宇, 陈芳, 颜建辉 2023 材料热处理学报 44 69

    Lin Y Z, Zheng Y H, Chen F, Yan J H 2023 Trans. Mater. Heat Treat. 44 69

    [36]

    Babilas R, Łoński W, Boryło P, Kądziołka Gaweł M, Gębara P, Radoń A 2020 J. Magn. Magn. Mater. 502 166492Google Scholar

    [37]

    Zhang H, Pan Y, He Y Z 2011 J. Therm. Spray Technol. 20 1049Google Scholar

    [38]

    Zhang S Y, Han B, Li M Y, Zhang Q, Hu C Y, Jia C X, Li Y, Wang Y 2021 Surf. Coat. Technol. 417 127218Google Scholar

    [39]

    Santodonato L J, Liaw P K, Unocic R R, Bei H, Morris J R 2018 Nat. Commun. 9 4520Google Scholar

    [40]

    Torralba J M, Alvaredo P, García Junceda A 2020 Powder Metall. 63 227Google Scholar

    [41]

    Brif Y, Thomas M, Todd I 2015 Scr. Mater. 99 93Google Scholar

    [42]

    Han C J, Fang Q H, Shi Y S, Tor S B, Chua C K, Zhou K 2020 Adv. Mater. 32 1903855Google Scholar

    [43]

    Luo J, Wang J, Su C, Geng Y, Chen X 2024 J. Mater. Eng. Perform. 33 12413Google Scholar

    [44]

    Shun T T, Hung C H, Lee C F 2010 J. Alloys Compd. 493 105Google Scholar

    [45]

    Hazen R M, Navrotsky A 1996 Am. Mineral. 81 1021Google Scholar

    [46]

    Starenchenko S V 2012 Russ. Phys. J. 54 965Google Scholar

    [47]

    Ma Y M, Fan J T, Zhang L J, Zhang M D, Cui P, Dong W Q, Yu P F, Li Y C, Liaw P K, Li G 2018 Intermetallics 103 63Google Scholar

    [48]

    Ma L L, Wang L, Nie Z H, Wang F C, Xue Y F, Zhou J L, Cao T Q, Wang Y D, Ren Y 2017 Acta Mater. 128 12Google Scholar

    [49]

    Ji C W, Ma A, Jiang J H 2022 J. Alloys Compd. 900 163508Google Scholar

    [50]

    Kumar A, Dhekne P, Swarnakar A K, Chopkar M 2018 Mater. Res. Express 6 026532Google Scholar

    [51]

    Lin T X, Feng M Y, Lian G F, Lu H, Chen C R, Huang X 2024 Mater. Charact. 216 114246Google Scholar

    [52]

    Li Z, Taheri M, Torkamany P, Heidarpour I, Torkamany M J 2024 Vacuum 219 112749Google Scholar

    [53]

    Shang X L, Wang Z J, He F, Wang J C, Li J J, Yu J K 2017 Sci. China Technol. Sci. 61 189

    [54]

    Wang S, Wu Y, Gesmundo F, Niu Y 2008 Oxid. Met. 69 299Google Scholar

    [55]

    Jiang S M, Xu C Z, Li H Q, Liu S C, Gong J, Sun C 2010 Corros. Sci. 52 435Google Scholar

    [56]

    Zuo T T, Li R B, Ren X J, Zhang Y 2014 J. Magn. Magn. Mater. 371 60Google Scholar

    [57]

    Wen J J, Liu X, Li Z H, Li W W 2023 J. Alloys Compd. 934 167622Google Scholar

    [58]

    Su Y, Lei X C, Chen W J, Su Y P, Liu H W, Ren S Y, Tong R Y, Lin Y T, Jiang W J, Liu X Z, Su D, Zhang Y G 2024 Chem. Eng. J. 500 157197Google Scholar

    [59]

    Lei X C, Wang Y Y, Wang J Y, Su Y, Ji P X, Liu X Z, Guo S N, Wang X F, Hu Q M, Gu L, Zhang Y G, Yang R, Zhou G, Su D 2023 Small Methods 8 2300754

  • [1] 吴昊, 王旭, 王建元, 翟薇, 魏炳波. 三维超声场调控(FeCoNiCrMn)92Mo8高熵合金组织演变与力学性能. 物理学报, doi: 10.7498/aps.74.20250657
    [2] 伯乐, 高小余, 宁志良, 王力, 孙剑飞, 张振江, 黄永江. 电流处理调控CoCrFeNi高熵合金纤维的组织结构与力学性能. 物理学报, doi: 10.7498/aps.74.20250518
    [3] 王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨. 设计制备具有优异形成能力和磁热效应的GdHoErCoNiAl高熵非晶合金. 物理学报, doi: 10.7498/aps.73.20241132
    [4] 郭静, 吴奇, 孙力玲. 抵御大变形超导体的发现. 物理学报, doi: 10.7498/aps.72.20231341
    [5] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度. 物理学报, doi: 10.7498/aps.72.20230646
    [6] 王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏. 相场法研究AlxCuMnNiFe高熵合金富Cu相析出机理. 物理学报, doi: 10.7498/aps.72.20222439
    [7] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, doi: 10.7498/aps.71.20221621
    [8] 蒋永林, 何长春, 杨小宝. ScxY1–x Fe2合金固溶和V2x Fe2(1–x)Zr有序-无序转变的理论预测. 物理学报, doi: 10.7498/aps.70.20210998
    [9] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20210324
    [10] 黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程. 含钨难熔高熵合金的制备、结构与性能. 物理学报, doi: 10.7498/aps.70.20201986
    [11] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, doi: 10.7498/aps.69.20191671
    [12] 齐伟华, 李壮志, 马丽, 唐贵德, 吴光恒, 胡凤霞. 磁性材料磁有序的分子场来源. 物理学报, doi: 10.7498/aps.66.067501
    [13] 潘江陵, 倪 军. 面心立方(001)方向AB合金薄膜表面层的有序无序相变. 物理学报, doi: 10.7498/aps.55.413
    [14] 胡隐樵. 强迫耗散系统的有序结构和系统的发展(Ⅰ),最小熵产生原理和有序结构. 物理学报, doi: 10.7498/aps.52.1379
    [15] 王 进, 赵志刚, 刘 楣, 邢定钰. 磁通格子的有序-无序相变和反向熔化. 物理学报, doi: 10.7498/aps.52.3162
    [16] 李婷, 秦自楷. 有序-无序型铁电和反铁电相变的格林函数理论. 物理学报, doi: 10.7498/aps.37.1406
    [17] 赵立华, 冯克安, 伍乃娟. W(112)p(2×1)-O化学吸附系统有序-无序相变的重整化群理论分析. 物理学报, doi: 10.7498/aps.35.104
    [18] 易孙圣, 刘益焕. 合金AgAuZn2的有序化. 物理学报, doi: 10.7498/aps.21.839
    [19] 施士元, 张国焕. 无序到有序恒温转变的弛豫时间. 物理学报, doi: 10.7498/aps.12.80
    [20] 程开甲;李正中. 内耗的热力学研究_代位合金在有序或无序态的内耗理论. 物理学报, doi: 10.7498/aps.12.281
计量
  • 文章访问数:  196
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-10
  • 修回日期:  2025-07-22
  • 上网日期:  2025-07-30

/

返回文章
返回