搜索

x
中国物理学会期刊

高温高压下镁及典型镁铝合金的电热导率

CSTR: 32037.14.aps.74.20250352

Electrical and thermal conductivity of Mg and typical Mg-Al alloys at high temperature and pressure

CSTR: 32037.14.aps.74.20250352
PDF
HTML
导出引用
  • 金属材料因其优异的电输运性能和良好的散热性能, 在工业领域应用广泛. 高温高压条件下, 实验测量金属的电热导率难度大且成本高, 数值模拟则是一种高效的方法. 本研究基于Kubo-Greenwood (KG) 公式结合第一性原理分子动力学开发了电导率和电子热导率计算软件TREX (TRansport at EXtremes). 采用该软件计算了镁及镁铝合金 AZ31B在300—1200 K和0—50 GPa温压范围内的电导率和电子热导率, 并与玻耳兹曼输运方程的计算结果进行了对比. 应用Slack方程计算其晶格热导率, 结合电子热导率得到了其总热导率. TREX 软件的计算结果与实验测试数据高度吻合, 充分验证了其计算电热导率的准确性, 并系统揭示了电热导率随温度与压强的变化规律. 本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00128中访问获取.

     

    Metallic materials are widely used in the industrial field due to their excellent electrical transport properties and superior thermal dissipation performance. However, experimental measurements of electrical and thermal conductivity under high-temperature and high-pressure conditions are challenging and costly. This makes numerical simulation an efficient alternative solution. In this study, we develop a computational software named TREX (TRansport at EXtremes). It is based on the Kubo-Greenwood (KG) formula combined with first-principles molecular dynamics. This software is used to calculate electrical conductivity and electronic thermal conductivity. Using magnesium and magnesium-aluminum alloy AZ31B as research subjects, we systematically investigate their electrical and thermal transport properties. The temperature and pressure are in a range of 300−1200 K and 0−50 GPa, respectively. The method involves using first-principles molecular dynamics simulations to obtain equilibrium configurations of high-temperature disordered structures. Electrical conductivity and electronic thermal conductivity are calculated using the KG formula. Lattice thermal conductivity is determined by the Slack equation. To validate the reliability of our approach, we perform comparative calculations by using the Boltzmann transport equation. The research results are cross-verified with experimental data from Sichuan University and the Aerospace Materials Test and Analysis Center. The findings demonstrate that the maximum relative error between computational and experimental results is within 20%. This confirms the accuracy of our method. Additionally, we elucidate the variation patterns of electrical and thermal conductivity in magnesium and AZ31B alloy with temperature and pressure. These patterns include the reduction in electrical conductivity due to aluminum doping, the significant enhancement of conductivity under high pressure, and the unique temperature-induced thermal conductivity enhancement in AZ31B alloy. The TREX program developed in this study and the established performance dataset provide essential tools and data support. They are useful for research on electrical and thermal transport mechanisms in metallic materials under extreme conditions, and also for engineering applications. All the data presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00128.

     

    目录

    /

    返回文章
    返回