-
本文设计了一种可支持伪表面波双面传输的声学超表面,并构建了一类声隐身装置。该超表面由双向开孔的亥姆霍兹共鸣器周期性排列构成,能够在上下表面之间灵活传导伪表面波,且结构整体厚度仅为工作波长的1/20,具有显著的亚波长特性。本文理论推导了伪表面波模式的色散方程,得到传播波矢与结构参数之间的依赖关系,通过优化双面超表面的结构参数,确保传导过程中的波矢匹配,实现伪表面波在上下表面之间的高效耦合。在此基础上,本文构建了一种“声透明通道”,通过在障碍物前后两侧铺设双面超表面,使伪表面波能够传导至结构下表面并绕过障碍物,实现声隐身效果。经数值模拟和实验验证,该装置对不同形状的大尺寸障碍物均表现出良好的鲁棒性,并且具有一定的工作带宽。本文提出的伪表面波隐身器件具有结构轻薄、灵活性高等显著优势,为深亚波长尺度的伪表面波操控及声学器件设计提供了新的研究思路和技术路径。Recent years have witnessed intensified efforts in utilizing spoof surface acoustic waves (SSAWs) to enable subwavelength-scale modulation. However, obstacles along the transmission path typically induce strong scattering of SSAWs, limiting their practical applications such as communications. In this paper, we propose a new type of acoustic metasurface that supports the SSAWs’ propagation on both sides and design an acoustic stealth device based on such a metasurface. This metasurface is composed of periodically arranged Helmholtz resonators with bidirectional apertures, whose unique structure enables the interlayer transitions of SSAWs between the top and bottom surfaces. Remarkably, the overall thickness of the structure is only 1/20 of the incident wavelength, demonstrating significant subwavelength characteristics. We calculate theoretically the dispersion curve of the SSAWs, establishing the dependence between the propagation wave vector and the structural parameters. By optimizing the structural parameters of the double-sided metasurface, the wave vector matching during propagation is ensured, thereby achieving efficient transitions with minimal losses between the top and bottom surfaces. We construct a “sound-transparent path” via numerical simulations that allows waves to bypass obstacles without scattering, and demonstrate that thermoviscous effects exert negligible influence on transmission efficiency. Furthermore, an experiment is carried out to validate this metasurface’s dual-sided wave-manipulation capability, which demonstrates that the SSAWs maintain its wavefront during interfacial propagation, showing excellent robustness against large-sized obstacles. The proposed stealth device offers notable advantages, including a lightweight structure and high flexibility, providing new research perspectives and technical pathways for the manipulation of SSAWs and the design of acoustic devices at deep subwavelength scales.
-
Keywords:
- Double-sided metasurface /
- Spoof surface acoustic wave /
- Dual-sided acoustic manipulation /
- Acoustic cloaking
-
[1] Li H X, Liang B, Cheng J C 2022 Sci. Sinica-Phys. Mech. Astron. 52 244302 (李澔翔, 梁彬, 程建春 2022中国科学:物理学 力学 天文学 52 244302)
[2] Li H X, ROSENDO-LóPEZ M A, ZHU Y F, Fan X D, Torrent D, Liang B, Cheng J C, Christensen J 2019 Research 2019 8345683
[3] Lasri O, Sirota L 2023 Appl. Phys. Lett. 123 032201
[4] Hu J, Liang B, Qiu X J 2019 Appl. Phys. Express 12 27002
[5] Hu J, Wang H Z 2020 Appl. Acoust. 39 799-803 (胡洁, 王昊泽2020 应用声学 39 799-803)
[6] Chen Z X, Peng Y G, Li H X, Liu J J, Ding Y J, Liang B, Zhu X F, Lu Y Q, Cheng J C, Alù A 2021 Sci. Adv. 7 eabj1198
[7] Gu Z M, Fang X S, Liu T, Gao H, Liang S J, Li Y, Liang B, Cheng J C, Zhu J 2021 Appl. Phys. Lett. 118 113501
[8] Wu K, Tan Y, Liu J J, Liang B, Cheng J C. 2025 Sci. China-Phys. Mech. Astron. 68 254304
[9] Jia Y R, Liu Y M, Hu B L, Xiong W, Bai Y C, Cheng Y, Wu D J, Liu X J, Christensen J 2022 Adv. Mater. 34 2202026
[10] Xie P X, Sheng Z Q, Huang Z X, Hu P, Wu H W 2023 Appl. Phys. Lett. 122 222202
[11] Yue Z C, Zhang Z W, Wang H X, Xiong W, Cheng Y, Liu X J 2022 New J. Phys. 24 053009
[12] Wu H W, Quan J Q, Yin Y Q, Sheng Z Q 2020 J. Phys. D: Appl. Phys. 53 455101
[13] Zheng Y, Liang S J, Fan H Y, An S W, Gu Z M, Gao H, Liu T, Zhu J 2022 JASA express lett. 2 024004
[14] Liu T, Chen F, Liang S J, Gao H, Zhu J 2019 Phys. Rev. Appl. 11 034061
[15] Liu J J, Liang B, Cheng J C. 2021 Phys. Rev. Appl. 15 014015
[16] Li H X, Liu J J, Chen Z X, Wu K, Liang B, Yang J, Cheng J C, Christensen J 2023 Nat. Commun. 14 7633
[17] Hirsch T M F, Mauranyapin N P, Romero E, Jin X, Harris G, Baker C G, Bowen W P 2024 Appl. Phys. Lett. 124 013504
[18] Dai H Q, Liu L B, Xia B Z, Yu D J 2021 Phys. Rev. Appl. 15 064032
[19] Zhu Z J, Hu N, Wu J Y, Li W X, Zhao J B, Wang M F, Zeng F Z, Dai H J, Zheng Y J 2022 Front. Phys. 10 1068833
[20] Dong E Q, Cao P Z, Zhang J H, Zhang S, Fang N X, Zhang Y 2023 Natl. Sci. Rev. 10 nwac246
[21] Xu S Z, Xie S M, Wu D, Chi Z H, Huang L 2022 Acta Phys. Sin. 71 050701 (胥守振, 谢实梦, 吴丹, 迟子惠, 黄林2022 物理学报 71 050701)
[22] Wu W H, Yang P F, Zhai W, Wei B B 2019 Chinese Phys. Lett. 36 084302
[23] Li P Q, Li Z L, Zhou W, Wang S W, Meng L, Peng Y G, Chen Z, Zheng H R, Zhu X F 2022 Adv. Funct. Mater. 32 2203109
[24] Zeng L S, Lin Z B, Li Z L,Yang Y, Hu Y, Chen Z, Peng Y G, Ma T, Zheng H R, Zhu X F 2025 Adv. Mater. 2025 202420229
[25] Yang X, Zhang Z H, Xu M W, Li S X, Zhang Y H, Zhu X F, Ouyang X P, Alù A 2024 Nat. Commun. 15 4346
[26] Zhao C Y, Wu K, Liu J J, Liang B, Cheng J C 2025 Phys. Rev. Appl. 23 034053
[27] Chen A, Xia Y F, Chen Z X, Su H J, Liu J J, Yang J, Zhu X F, Liang B, Cheng J C 2025 Adv. Funct. Mater. 202425833
计量
- 文章访问数: 36
- PDF下载量: 2
- 被引次数: 0