搜索

x
中国物理学会期刊

基于双面声学超表面的伪表面波隐身装置设计

CSTR: 32037.14.aps.74.20250379

Design of acoustic cloaking for spoof surface waves based on double-sided acoustic metasurface

CSTR: 32037.14.aps.74.20250379
PDF
HTML
导出引用
  • 设计了一种可支持伪表面波双面传输的声学超表面, 并构建了一类声隐身装置. 该超表面由双向开孔的亥姆霍兹共鸣器周期性排列构成, 能够在上下表面之间灵活传导伪表面波, 且结构整体厚度仅为工作波长的1/20, 具有显著的亚波长特性. 本文理论推导了伪表面波模式的色散方程, 得到传播波矢与结构参数之间的依赖关系, 通过优化双面超表面的结构参数, 确保传导过程中的波矢匹配, 实现伪表面波在上下表面之间的高效耦合. 在此基础上, 本文构建了一种“声透明通道”, 通过在障碍物前后两侧铺设双面超表面, 使伪表面波能够传导至结构下表面并绕过障碍物, 实现声隐身效果. 经数值模拟和实验验证, 该装置对不同形状的大尺寸障碍物均表现出良好的鲁棒性, 并且具有一定的工作带宽. 本文提出的伪表面波隐身器件具有结构轻薄、灵活性高等显著优势, 为深亚波长尺度的伪表面波操控及声学器件设计提供了新的研究思路和技术路径.

     

    In recent years, people have increased their efforts to use spoof surface acoustic waves (SSAWs) to achieve subwavelength-scale modulation. However, obstacles on the transmission path often cause strong scattering of SSAWs, which limits their practical applications in communications and other fields. In this paper, we propose a new type of acoustic metasurface that supports the SSAWs’ propagation on both sides and design an acoustic stealth device based on such a metasurface. This metasurface is composed of periodically arranged Helmholtz resonators with bidirectional apertures, whose unique structure enables SSAWs to achieve interlayer transitions between the top surface and bottom surface. Remarkably, the total thickness of the structure is only 1/20 of the incident wavelength, exhibiting obvious subwavelength characteristics. We theoretically calculate the dispersion curve of SSAWs, and establish the dependency relationship between the propagation wave vector and the structural parameters. By optimizing the structural parameters of the double-sided metasurface, the wave vector matching during propagation is ensured, thereby achieving efficient transitions with minimal losses between the top and bottom surfaces. We construct a “sound-transparent path” through numerical simulations, allowing waves to bypass obstacles without scattering, and demonstrate that thermoviscous effects exert a negligible influence on transmission efficiency. Furthermore, an experiment is carried out to validate this metasurface’s dual-sided wave-manipulation capability, which demonstrates that the SSAWs maintain their wavefronts during interfacial propagation, showing excellent robustness against large-sized obstacles. The proposed stealth device possesses notable advantages, including a lightweight structure and high flexibility, providing new research perspectives and technical pathways for manipulating SSAWs and designing acoustic devices on a deep subwavelength scale.

     

    目录

    /

    返回文章
    返回