搜索

x
中国物理学会期刊

基于双层运动模型的楼梯行人群体仿真

CSTR: 32037.14.aps.74.20250409

Simulation of pedestrian groups on stairs based on dual-layer motion model

CSTR: 32037.14.aps.74.20250409
PDF
HTML
导出引用
  • 现有模型因忽略三维几何约束与动态交互效应, 难以准确模拟复杂楼梯场景下的群体行为. 本文提出一种双层运动模型, 通过分层建模方法融合三维元胞离散化空间、双足步态动力学及接触力扰动分析. 模型将行人抽象为“双足一点”多节点系统, 构建上层质心运动空间与下层双足支撑平面. 模型下层基于元胞路径规划约束跨步运动, 并设计准同步状态切换机制保障群体时空一致性; 上层采用几何检测算法识别行人物理接触, 结合碰撞动力学模型, 量化接触冲突对行人稳定性的影响. 仿真实验表明, 模型能够有效模拟行人上下楼运动轨迹、动态平衡维持机制及失稳事件演化过程. 研究采用稳定裕度评估行人间接触力的扰动效应, 揭示了密度对失稳风险的正向影响, 为楼梯场景下的安全评估与疏散优化提供了高效仿真工具.

     

    This study addresses the critical challenge of simulating pedestrian crowd dynamics in staircase environments, where existing models often neglect three-dimensional geometric constraints and dynamic interactions. We propose a dual-layer motion model (DLM) that integrates a hierarchical kinematic-dynamic coupling framework, geometric discretization methods, and crowd interaction mechanisms. The model abstracts pedestrians as a multi-node “bipedal single-point” system, distinguishing between an upper-layer centroid motion plane and a lower-layer dual-foot support space. This method combines spatiotemporal modeling and contact mechanics to address the complexity of stairwell dynamics. The lower layer uses cellular path planning to constrain stepping motions and ensures spatiotemporal consistency of the crowd through a quasi-synchronous state transition mechanism. The upper layer uses an ellipse-projection-based separating axis algorithm to detect collision conflicts and quantifies contact effects by using collision dynamics. Additionally, a quasi-synchronous state migration mechanism is introduced within a hybrid discrete-continuous time framework to coordinate gait cycles in large-scale multi-agent simulations and solve the problem of temporal asynchrony. Based on the stability control principle of inverted pendulum dynamics and combined with biomechanical regulation capabilities and motion threshold constraints, the perturbation effects of contact forces on pedestrian balance are quantified, enabling individual dynamic stability analysis.
    To validate the model, a parameterized stairwell scenario (step height: 0.15 m, tread depth: 0.26 m) is constructed to simulate the motion of heterogeneous pedestrians (mass: (65 ± 5) kg, height: (1.70 ± 0.2) m). The simulation results show that the model accurately captures the dynamic features of pedestrian movement in stairwells: the centroid displacement ratio is very close to the theoretical staircase slope, and the deviation between the crowd’s average speed and empirical data is less than 6%. Dynamic stability analysis reveals the evolution from individual local imbalance to group instability. Further parametric studies indicate that balancing target attraction weight (α) and repulsion weight (β) can regulate the cohesion of crowd behavior, while increasing the collision recovery coefficient (e) can amplify contact force fluctuations.
    In conclusion, the dual-layer model links motion planning and dynamic stability in the stairwell environments, providing high-fidelity insights into pedestrian safety. The results emphasize the interdependence between geometric constraints, biomechanical adjustments, and density-driven instability. Future research may extend the model to irregular stair geometries and incorporate heterogeneous pedestrian parameters to improve the predictive accuracy of evacuation optimization and architectural safety design.

     

    目录

    /

    返回文章
    返回