搜索

x
中国物理学会期刊

基于简正波强度匹配的浅海水平阵目标深度估计方法

CSTR: 32037.14.aps.74.20250419

A target depth estimation method in shallow water based on matched normal mode intensity

CSTR: 32037.14.aps.74.20250419
PDF
HTML
导出引用
  • 针对浅海波导中存在的底质参数失配造成水平阵难以正确获取目标深度的问题, 在未知底质参数条件下, 提出了一种基于简正波强度匹配的目标深度估计方法. 通过波数域波束形成技术估计波导中各阶简正波的水平波数和强度, 在简正波模态函数特征方程的基础上利用有限差分法对简正波模态函数进行反演, 计算估计和反演简正波强度之间的匹配度, 最终实现目标深度估计. 基于水平均匀线列阵的仿真结果表明, 所提的算法无需底质参数即可实现对浅海目标深度较为准确的估计. 同时分析了算法在不同的底质参数、阵列孔径、声源频率、信噪比和声速失配条件下的深度估计性能. 结果表明, 所提方法不受底质参数失配的影响, 同时对声速失配较为稳健, 在阵元数不少于128, 频带范围为50—150 Hz, 阵元信噪比大于–10 dB的条件下可对全海深目标深度进行有效估计. 最终利用南海浅海的海试数据对所提方法的可行性进行了验证.

     

    A novel target depth estimation method based on normal mode intensity match is proposed for shallow water environment by using horizontal array to overcome the performance degradation observed in traditional approaches under the condition that seabed parameters are not matched. Firstly, horizontal wavenumbers and normal mode intensities are estimated through wavenumber domain beamforming. Secondly, modal function of normal mode inversion is performed by solving the modal function characteristic equation by using the finite difference method. Thirdly, the match degree between inverted and estimated normal mode intensities is evaluated to estimate target depth. The numerical simulation results show that the proposed method can accurately estimate the target depth in shallow water scenarios without knowing the seabed parameters. Furthermore, the performance of the method is analyzed under different conditions including different seabed parameters, array apertures and source frequencies. The results reveal three conclusions: 1) the mismatch of seabed parameters has no influence on the method; 2) the effective performance of full depth source estimation requires no less than 128 array elements, a frequency band range of 50–150 Hz, and the signal-to-noise radio of the element on a horizontal line array exceeding –10 dB; 3) the method has robust performance against sound speed profile mismatch. Finally, the feasibility of the proposed method is validated by the experimental data received by a horizontally towing 77-element array during the shallow-water sea trial in the South China Sea.

     

    目录

    /

    返回文章
    返回