搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MoS2莫尔超晶格层间电导特性的理论研究

吴奖承 殷玉婷 方贺男

引用本文:
Citation:

MoS2莫尔超晶格层间电导特性的理论研究

吴奖承, 殷玉婷, 方贺男

Theoretical study on the interlayer conductance of MoS2 moiré superlattices

WU Jiangcheng, YIN Yuting, FANG Henan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 作为二维半导体过渡金属硫族化物中的典型代表性材料, MoS2具有带隙可调谐特性等优异物理特性。因此, MoS2莫尔超晶格是研究凝聚态电子输运问题和设计光电器件的理想体系。另一方面,层间电导的测量是研究莫尔超晶格层间耦合作用的重要手段。为了阐明带隙可调谐等特性对莫尔超晶格层间电导的影响,有必要对MoS2莫尔超晶格的层间电导特性加以研究。本文利用衍射物理中的光学方法,构建了MoS2莫尔超晶格体系的隧穿理论。在该理论中,将MoS2莫尔超晶格中电子的隧穿视作电子波为周期性光栅所散射。利用该理论,本文研究了MoS2莫尔超晶格的层间电导特性。研究结果表明:由于衍射效应,界面处隧穿电子波存在两个分波均与界面势产生共振,所以层间电导随扭转角的变化曲线呈现双峰结构。进一步地,本文还研究了隧穿层和金属电极对层间电导的影响:上层和下层MoS2晶格厚度分别影响层间电导的峰和背景;界面势强度的增大可以增强隧穿电子的相干性;金属电极化学势主要影响MoS2莫尔超晶格层间电导峰的特性,且相比于石墨莫尔超晶格,影响更为显著。
    As a typical material of two-dimensional semiconductor transition metal chalcogenides, MoS2 has excellent physical properties such as tunable band gap. Therefore, MoS2 moirésuperlattice is an ideal system for investigating the electron transport in condensed matter and the design of optoelectronic devices. On the other hand, interlayer conductance serves as a significant indicator for analyzing coupling effects in moiré superlattice. Here, in order to clarify the influence of tunable band gap on the interlayer conductance, we have developed a tunneling theory for calculating the interlayer conductance of MoS2 moiré superlattices by using optical methods in diffraction physics. In this theory, the electron tunneling can be considered as the diffraction of electron waves by the periodic gratings. Accordingly, the influences of the periodicity of MoS2 moiré superlattices and the coherence of the tunneling electrons can be well included in the theory. In addition, the effect of the tunable band gap of MoS2 is taken into account. Based on the theory, we have investigated the properties of the interlayer conductance of MoS2 moirésuperlattice. The theoretical results show that, due to the diffraction effect, there exist two partial waves of the tunneling electron at the interface which can resonate with the interface potential. Accordingly, the interlayer conductance curves exhibit a double-peak structure. Furthermore, we have analyzed the influences of the tunneling layer and the metal electrodes to the interlayer conductance: the thicknesses of the upper MoS2 lattice affects the peak and the lower one primarily influence the background. The coherence of tunneling electrons will be enhanced when the parameter of interface potential strength increases. The chemical potential of the metal electrode mainly influences the properties of the peak, and the influence is more significant than that in graphite moirésuperlattice.
  • [1]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43

    [2]

    Naik M H, Jain M 2018 Phys. Rev. Lett. 121 266401

    [3]

    Li T X, 2022 Acta Phys. Sin. 71 127309

    [4]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66

    [5]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [6]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71

    [7]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [8]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [9]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [10]

    Liu K, Zhang L, Cao T, Jin C, Qiu D, Zhou Q, Zettl A, Yang P, Louie S G, Wang F 2014 Nat. Commun. 5 4966

    [11]

    Liao M, Wei Z, Du L, Wang Q, Tang J, Yu H, Wu F, Zhao J, Xu X, Han B, Liu K, Gao P, Polcar T, Sun Z, Shi D, Yang R, Zhang G 2020 Nat. Commun. 11 2153

    [12]

    Xu M, Ji H, Zheng L, Li W, Wang J, Wang H, Luo L, Lu Q, Gan X, Liu Z, Wang X, Huang W 2024 Nat. Commun. 15 562

    [13]

    Zhou J, Huang H, Zhao Z, Dou Z, Zhou L, Zhang T, Huang Z, Feng Y, Shi D, Liu N, Yang J, Nie J C, Wang Q, Dong J, Liu Y, Dou R, Xue Q 2024 Adv. Mater. 36 2408227

    [14]

    Garcia-Ruiz A, Liu M H 2024 Nano Lett. 24 16317

    [15]

    Yang M M, Cong R D, Wu C L, Zhang Y, Gao Q, Hu X W, Zhang Y F, Tan L, Liang B L, Zhao X H, Li X L 2024 Surf. Interfaces 52 104790

    [16]

    Li H, Wei X, Wu G, Gao S, Chen Q, Peng L M 2018 Ultramicroscopy 193 90

    [17]

    Koren E, Leven I, Lörtscher E, Knoll A, Hod O, Duerig U 2016 Nat. Nanotechnol. 11 752

    [18]

    Chari T, Ribeiro-Palau R, Dean C R, Shepard K 2016 Nano Lett. 16 4477

    [19]

    Yu Z, Song A, Sun L, Li Y, Gao L, Peng H, Ma T, Liu Z, Luo J 2020 Small 16 1902844

    [20]

    Zhang S, Song A, Chen L, Jiang C, Chen C, Gao L, Hou Y, Liu L, Ma T, Wang H, Feng X Q, Li Q 2020 Sci. Adv. 6 eabc5555

    [21]

    Inbar A, Birkbeck J, Xiao J, Taniguchi T, Watanabe K, Yan B, Oreg Y, Stern A, Berg E, Ilani S 2023 Nature 614 682

    [22]

    Birkbeck J, Xiao J, Inbar A, Taniguchi T, Watanabe K, Berg E, Glazman L, Guinea F, Von Oppen F, Ilani S 2025 Nature 641 345

    [23]

    Fang H, Xiao M 2021 ACS Appl. Electron. Mater. 3 2543

    [24]

    Tao Y, Liu C, Xiao M, Fang H 2024 Chin. Phys. B 33 107301

    [25]

    Liao M, Wu Z W, Du L, Zhang T, Wei Z, Zhu J, Yu H, Tang J, Gu L, Xing Y 2018 Nat. Commun. 9 4068

    [26]

    Molinàs-Mata P, 1996 Phys. Rev. A 54 2060

    [27]

    Kočinac S L S, Milanović V 2008 Phys. Lett. A 372 191

    [28]

    Kittle C 2005 Introduction of Solid State Physics (New York: John Wiley & Sons, Inc) p229

    [29]

    Cowley J M 1995 Diffraction Physics (Amsterdam: Elsevier) p177

    [30]

    Fang H, Xiao M, Rui W, Du J, Tao Z 2016 Sci. Rep. 6 24300

    [31]

    Ataca C, Ciraci S 2011 J. Phys. Chem. C 115 13303

    [32]

    Zhang G, Huang S, Chaves A, Song C, Özçelik V O, Low T, Yan H 2017 Nat. Commun. 8 14071

  • [1] 刘恩克. 磁序与拓扑的耦合: 从基础物理到拓扑磁电子学. 物理学报, doi: 10.7498/aps.73.20231711
    [2] 黄雪飞, 苏杰, 廖健颖, 李盈傧, 黄诚. 反向旋转双色椭偏场中原子隧穿电离电子的全息干涉. 物理学报, doi: 10.7498/aps.71.20212226
    [3] 李婷, 汪涛, 王叶兵, 卢本全, 卢晓同, 尹默娟, 常宏. 浅光晶格中量子隧穿现象的实验观测. 物理学报, doi: 10.7498/aps.71.20212038
    [4] 面向类脑计算的物理电子学专题编者按. 物理学报, doi: 10.7498/aps.71.140101
    [5] 陈玉, 陈家麟, 查国桥, 周世平. 石墨烯铁磁-绝缘层-超导结的输运. 物理学报, doi: 10.7498/aps.63.177402
    [6] 李春雷, 徐燕, 张燕翔, 叶宝生. 双量子阱中光子辅助电子自旋隧穿. 物理学报, doi: 10.7498/aps.62.107301
    [7] 刘江涛, 黄接辉, 肖文波, 胡爱荣, 王建辉. 栅极电势对强光场下石墨烯场效应管中电子隧穿的影响. 物理学报, doi: 10.7498/aps.61.177202
    [8] 王文元, 蒙红娟, 杨阳, 祁鹏堂, 马云云, 马莹, 段文山. 费米超流气体的非线性Landau-Zener 隧穿. 物理学报, doi: 10.7498/aps.61.087302
    [9] 蒙红娟, 杨阳, 王文元, 祁鹏堂, 马云云, 马莹, 王善进, 段文山. 费米超流气体的非线性Rosen-Zener隧穿. 物理学报, doi: 10.7498/aps.61.060303
    [10] 罗小光, 何济洲. 摇摆型棘齿热电子隧穿制冷. 物理学报, doi: 10.7498/aps.60.090506
    [11] 王沙, 杨志安. 光子晶格中光束演化的二能级模型及非线性Landau-Zener隧穿. 物理学报, doi: 10.7498/aps.58.3699
    [12] 王沙, 杨志安. 二维周期光子晶格中的非线性Landau-Zener隧穿. 物理学报, doi: 10.7498/aps.58.729
    [13] 林峰, 李缵轶, 王山鹰. TiO2纳米管的力学和电子学性质. 物理学报, doi: 10.7498/aps.58.8544
    [14] 金莲, 朱林, 李玲, 谢征微. 多层结构双自旋过滤隧道结中的电子输运特性. 物理学报, doi: 10.7498/aps.58.8577
    [15] 朱 林, 陈卫东, 谢征微, 李伯臧. NM/FI/NI/FI/NM新型双自旋过滤隧道结的隧穿电导和隧穿磁电阻. 物理学报, doi: 10.7498/aps.55.5499
    [16] 吴卓杰, 朱卡的, 袁晓忠, 郑 杭. 电声子相互作用对量子点分子中单电子隧穿的影响. 物理学报, doi: 10.7498/aps.54.3346
    [17] 王茂祥, 孙承休, 史晓春, 俞建华. 双势垒结构Cu-Al2O3-MgF2-Au隧道结中的电子共振隧穿与发光特性研究. 物理学报, doi: 10.7498/aps.48.326
    [18] 俞建华, 孙承休, 王茂祥, 张佑文, 魏同立. 金属-绝缘体-金属隧道发光结的电子隧穿和负阻现象. 物理学报, doi: 10.7498/aps.47.300
    [19] 潘少华, 冯思民, 崔大复, 杨国桢. 隧穿展宽对超晶格子带间光吸收饱和的影响. 物理学报, doi: 10.7498/aps.42.1074-2
    [20] 潘少华;冯思民;崔大复;杨国祯. 隧穿展宽对超晶格子带间光吸收饱和的影响. 物理学报, doi: 10.7498/aps.40.1074
计量
  • 文章访问数:  31
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-19

/

返回文章
返回