搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于对称啁啾长周期光纤光栅的双参量传感

黄秋萍 朱晓帅 任子嫣 陈海云 凌强 彭保进 陈达如

引用本文:
Citation:

基于对称啁啾长周期光纤光栅的双参量传感

黄秋萍, 朱晓帅, 任子嫣, 陈海云, 凌强, 彭保进, 陈达如

Dual-Parameter Sensing Based on Symmetrically Chirped Long-Period Fiber Grating

HUANG Qiuping, ZHU Xiaoshuai, REN Ziyan, CHEN Haiyun, LING Qiang, PENG Baojin, CHEN Daru
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 提出了一种基于对称啁啾长周期光纤光栅的双参量传感方法,传感器由两个长度和平均周期相同但啁啾系数相反的啁啾长周期光纤光栅组成,由于马赫-曾德尔干涉效应和光栅的啁啾效应,对称啁啾长周期光纤光栅的透射谱表现为频率渐变的干涉条纹,相邻干涉谷间隔随波长而增大,条纹中不同波长位置的干涉谷对同一被测参量的响应灵敏度不同,因而可以通过矩阵解调实现对多个参量的同时测量。对传感器的模式干涉机制、光谱特性和传感原理进行了理论和数值分析,并通过紫外光逐点曝光法刻制了光栅结构,平均光栅周期为321μm,啁啾系数为±21.9μm/cm,总长度为4.34cm,实现了对环境折射率和温度双参量的同时测量。此外,由于条纹光谱中有多个频率不同的干涉谷,因此该传感器结构可以被进一步拓展应用于对3个及以上环境参量的同时测量,在生物化学传感、环境监测等诸多领域有较好的应用前景。
    A dual-parameter sensor based on a symmetrically chirped long-period fiber grating (SCLPFG) is proposed and demonstrated. The SCLPFG consists of two segments of long-period fiber grating (LPFG) of identical length and average period, but with opposite chirp coefficients, resulting in the formation of an in-fiber Mach-Zehnder interferometer (MZI). Due to the chirping effect of the LPFG, the core mode at different wavelengths is coupled to the cladding mode at varying positions within the positively chirped LPFG. Integrated with the symmetry of the SCLPFG, the stimulated cladding mode is recoupled into the core at the symmetrical position in the negatively chirped LPFG. Consequently, in this MZI configuration, the effective length of the interference arm is not fixed but varies with wavelength. As a result, the transmission spectrum of the SCLPFG is characterized by a nonuniform fringe pattern where the free spectrum range (FSR) increases with wavelength. For the MZI-based fiber sensor, the phase difference between the core and cladding modes, influenced by environmental parameters, plays a crucial role in determining sensitivity, as this phase difference is directly proportional to the length of the interference arm. Therefore, the sensitivities interrogated by the dips at different wavelengths in the fringe pattern are inherently different for a specific measurand, leading to the potential for multi-parameter sensing through a differential modulation method.
    The fringe characteristics and sensing mechanism are systematically investigated through theoretical analysis and numerical simulation. In the experimental section, the SCLPFG structure was inscribed into a Corning single-mode fiber via point-by-point UV pulse laser irradiation on the photosensitive core. The grating exhibits an average period of 321 μm and a chirping coefficient of ±21.9 μm/cm, with the total length of the symmetrically chirped grating determined to be 4.34 cm. Experimental implementation of simultaneous dual-parameter sensing for surrounding refractive index (SRI) and temperature was conducted, verifying the differential response of distinct fringe dips to SRI and temperature variations. A 2×2 sensitivity coefficient matrix was established by linearly fitting the SRI and temperature response data, which were obtained by interrogating two dips at different wavelengths. Thus, the variations of SRI and temperature were determined based on the inverse sensitivity coefficient matrix multiplied by the wavelength shift array. Furthermore, temperature sensitivities were corrected by accounting for the thermal effect on the liquid refractive index. Finally, the sensor achieved maximum sensitivities of -95.316 nm/RIU for SRI and 0.0849 nm/℃ for temperature, both with excellent linearity. This sensing scheme features a compact structure, high sensitivity, and multi-parameter measurement capability. Moreover, the multi-channel nonuniform fringe characteristics enable the sensor configuration to be extended for simultaneous measurement of three or more parameters, providing a promising lab-on-fiber platform for multi-parameter sensing applications.
  • [1]

    Gao S, Liu Y, Yang J, Duan Z Y, Yin T A, Liu Z H, Shi J H, Yuan L B, Guan C Y 2024 J. Lightwave Technol. 42 1696

    [2]

    Liu S, Zhou M, Zhang Z, Sun Z Y, Bai Z Y, Wang Y P 2022 Opt. Lett. 47 2602

    [3]

    Hao J Q, Han B C 2020 Acta Opt. Sin. 40 0206002 (in Chinese) [郝晋青, 韩丙辰 2020 光学学报 40 0206002]

    [4]

    Tian T, Li M, Ma Y W, Geng T, Yuan L B 2023 Opt. Lett. 48 2785

    [5]

    Wang J B, Hao J Y, Zhou J, Wang A Z, Zeng X Z, Yang X Y, Meng H R, Li S, Yang Q, Sun W M, Geng T 2023 Sens. Actuator A: Phys. 359 114465

    [6]

    Yang Y, Xu B, Liu Y M, Li P, Wang D N, Zhao C L 2017 Acta Phys. Sin. 66 094205 (in Chinese) [杨易, 徐贲, 刘亚铭, 李萍, 王东宁,赵春柳 2017 物理学报 66 094205]

    [7]

    Chen P Y, Zhong N B, He X F, Xie Q H, Wan B, He Y Y, Wu L, Liu Y, Lai D 2024 Acta Opt. Sin. 44 0428003 (in Chinese) [陈鹏宇, 钟年丙, 何雪丰, 解泉华, 万波, 贺媛媛,吴磊,课洋,赖东 2024 光学学报 44 0428003]

    [8]

    Chen H Y, Gu Z T, Gao K 2014 Sens. Actuator B: Chemical 196 18

    [9]

    Ding Y L, Chen Y, Luo S, Ling Q, Zhang Y S, Yu Z W, Guan Z G, Chen D R 2024 Opt. Laser Technol. 171 110414

    [10]

    Chen Y, Luo W X, Jiao B B, Yan Y X, Ling Q, Chen H Y, Yu Z W, Guan Z G, Chen D R 2024 J. Lightwave Technol. 42 463

    [11]

    Yue Y, Hu X X, Zhou R, Wang R H, Qiao X G 2023 J. Lightwave Technol. 41 2578

    [12]

    Zhu X S, Ling Q, Ren Z Y, Chen H Y, Zhou R J, Wang Y, Lou G, Luo S, Yu Z W, Guan Z G, Chen D R 2025 Opt. Laser Technol. 182 112232

    [13]

    Ghosh S, Dissanayake K, Asokan S, Sun T, Rahman B M A, Grattan K T V 2022 Sens. Actuator B: Chem. 364 131818

    [14]

    Li X L, Zhao H Y, Wu W J, Jiang W F, Zheng J J, Zhang Z X, Yu K H, Wei W 2022 Acta Phys. Sin. 71 050702 (in Chinese) [李醒龙, 赵浩兴, 武文杰, 蒋卫峰, 郑加金, 张祖兴, 余柯涵, 韦玮 2022 物理学报 71 050702]

    [15]

    Liu Y G, Yang D Q, Wang Y X, Zhang T, Shao M, Yu D, Fu H W, Jia Z N 2019 Opt. Commun. 443 166

    [16]

    Zhang P, Tang M, Gao F, Zhu B P, Fu S N, Ouyang J, Shum P P, Liu D M 2014 Opt. Express 22 19581

    [17]

    Zhao Y, Zhao J, Wang X X, Peng Y, Hu X G 2022 Sens. Actuator B: Chem. 353131134

    [18]

    Bhatia V, Campbel D, Claur R O 1997 Opt. Lett. 22 648

    [19]

    Ling Q, Gu Z T, Pang B 2020 Opt. Fiber Technol. 58 102264

    [20]

    Zhao Y, Chen S, Guo Y, Jiang Y, Chen S, Mou C, Liu Y, He Z 2024 Opt. Laser Technol. 175 110879

    [21]

    Zhang S, Geng T, Sun W M 2022 Opt. Lett. 47 2266

    [22]

    Esposito F, Srivastava A, Iadicicco A, Campopiano S 2019 Opt. Laser Technol. 113 198

    [23]

    Urrutia A, Goicoechea J, Ricchiuti A, Barrera D, Sales S, Arregui F 2016 Sens. Actuator B: Chem. 227 135

    [24]

    Liu T, Li Y W, Dai X Y, Gan W B, Wang X S, Dai S X, Song B A, Xu T F Zhang P Q 2023 J. Lightwave Technol. 41 5169

    [25]

    Erdogan T 1997 J. Lightwave Technol. 15 1277

    [26]

    James S W, Ishaq I, Ashwell G J, Tatam R P 2005 Opt. Lett. 30 2197

    [27]

    Yan J H, Zhang A P, Shao L Y, Ding J F, He S L 2007 IEEE Sens. J. 7 1360

    [28]

    Liu S, Zhou, M, Zhang Z, Sun Z, Bai Z, Wang Y 2022 Opt. Lett. 47 2602

  • [1] 种涛, 傅华, 李涛, 莫建军, 张旭平, 马骁, 郑贤旭. 一种同步研究透明材料折射率和动力学特性的实验方法. 物理学报, doi: 10.7498/aps.70.20210414
    [2] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器. 物理学报, doi: 10.7498/aps.69.20191456
    [3] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, doi: 10.7498/aps.68.20190051
    [4] 赵顾颢, 毛少杰, 赵尚弘, 蒙文, 祝捷, 张小强, 王国栋, 谷文苑. 双旋光双反射结构的温度-辐射自稳定性原理和实验研究. 物理学报, doi: 10.7498/aps.68.20190429
    [5] 张伟, 刘颖刚, 张庭, 刘鑫, 傅海威, 贾振安. 芯内双微孔复合腔结构的光纤法布里-珀罗传感器研究. 物理学报, doi: 10.7498/aps.67.20180528
    [6] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器. 物理学报, doi: 10.7498/aps.66.094205
    [7] 池浪, 费洪涛, 王腾, 易建鹏, 方月婷, 夏瑞东. 基于有机半导体激光材料的高灵敏度溶液检测传感器件. 物理学报, doi: 10.7498/aps.65.064202
    [8] 王小飞, 杨华军, 张戈, 张庆礼, 窦仁勤, 丁守军, 罗建乔, 刘文鹏, 孙贵花, 孙敦陆. 自准直法测GdTaO4晶体折射率. 物理学报, doi: 10.7498/aps.65.087801
    [9] 彭博栋, 宋岩, 盛亮, 王培伟, 黑东炜, 赵军, 李阳, 张美, 李奎念. 辐射致折射率变化用于MeV级脉冲辐射探测的初步研究. 物理学报, doi: 10.7498/aps.65.157801
    [10] 张旭平, 罗斌强, 种涛, 王桂吉, 谭福利, 赵剑衡, 孙承纬, 刘仓理. 磁驱动准等熵加载下Z切石英晶体的折射率. 物理学报, doi: 10.7498/aps.65.046201
    [11] 史文俊, 易迎彦, 黎敏. 锗在吸收边附近的压力-折射率系数. 物理学报, doi: 10.7498/aps.65.167801
    [12] 邓春雨, 侯尚林, 雷景丽, 王道斌, 李晓晓. 单模光纤中用声波导布里渊散射同时测量温度和应变. 物理学报, doi: 10.7498/aps.65.240702
    [13] 刘俊池, 李洪文, 王建立, 刘欣悦, 马鑫雪. 基于最大熵估计Alpha谱缩放与平移量的温度与发射率分离算法. 物理学报, doi: 10.7498/aps.64.175205
    [14] 朱胜军, 王圣来, 刘琳, 王端良, 李伟东, 黄萍萍, 许心光. 大尺寸磷酸二氢钾晶体的折射率均一性研究. 物理学报, doi: 10.7498/aps.63.107701
    [15] 曹晔, 裴庸惟, 童峥嵘. 仅用一根局部微结构长周期光纤光栅实现温度与弯曲曲率的同时测量. 物理学报, doi: 10.7498/aps.63.024206
    [16] 花世群, 骆英. 发光光弹性涂层折射率测量方法. 物理学报, doi: 10.7498/aps.62.057801
    [17] 杨健戈, 孙成林, 杨永波, 高淑琴, 姜永恒, 里佐威. 改变溶液折射率方法研究Fermi共振. 物理学报, doi: 10.7498/aps.61.037802
    [18] 李雪梅, 俞宇颖, 李英华, 张林, 马云, 汪小松, 付秋卫. 冲击压缩下Z-切石英的弹性响应特性和折射率. 物理学报, doi: 10.7498/aps.59.2691
    [19] 延凤平, 郑 凯, 王 琳, 李一凡, 龚桃荣, 简水生, 尾形健一, 小池一步, 佐佐诚彦, 井上正崇, 矢野满明. 分子束外延法在Sapphire衬底上生长的Zn1-xMgxO薄膜折射率及厚度的测试. 物理学报, doi: 10.7498/aps.56.4127
    [20] 陈国庆, 吴亚敏, 陆兴中. 金属/电介质颗粒复合介质光学双稳的温度效应. 物理学报, doi: 10.7498/aps.56.1146
计量
  • 文章访问数:  12
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-20

/

返回文章
返回