搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用频域理论研究束缚电子在强激光场中的单光子康普顿散射过程

邱媛媛 杨玉军 郭迎春 王兵兵

引用本文:
Citation:

利用频域理论研究束缚电子在强激光场中的单光子康普顿散射过程

邱媛媛, 杨玉军, 郭迎春, 王兵兵

The single-photon Compton scattering process of bound electrons in intense laser fields is studied by using frequency-domain theory

Qiu Yuan-Yuan, Yang Yu-Jun, Guo Ying-chun, Wang Bing-Bing
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 康普顿散射是指强激光场与物质中电子相互作用导致光子发射的非弹性散射过程。近年来,随着X射线自由电子激光器迅速发展,X射线激光的强度逐渐增大,X射线单光子康普顿散射过程的信号逐渐增强。本文基于非微扰量子电动力学的频域理论研究强X射线激光场下束缚电子的单光子康普顿散射过程。发现随着入射光子能量的增加,在背向散射时康普顿散射双重微分几率会逐渐降低。这项工作为高频强激光场中康普顿散射与原子电离之间建立了联系,为探索高激光强度下的原子结构动力学提供了一个研究平台。
    Compton scattering is defined as an inelastic scattering process in which the interaction between strong laser fields and electrons in matter leads to photon emission. In recent years, with the rapid development of X-ray free-electron lasers, the intensity of X-ray lasers has steadily increased, and the photon energy in Compton scattering process has risen correspondingly. Previous studies have focused on single-photon Compton scattering of free electrons. However, the mechanisms of non-relativistic X-ray photon scattering by bound electrons remain to be elucidated. To address this, we develop a frequency-domain theory based on non-perturbative quantum electrodynamics to investigate single-photon Compton scattering of bound electrons in strong X-ray laser fields. Our results show that the double-differential probability of Compton backscattering decreases with increasing incident photon energy. This work establishes a connection between Compton scattering and atomic ionization in high-frequency intense laser fields, thereby establishing a platform for studying atomic structure dynamics under high-intensity laser conditions.
  • [1]

    Compton A H 1923 Phys. Rev. 21 483

    [2]

    Cooper M 1971 Adv. Phys. 20 453

    [3]

    Ching W, Callaway J 1974 Phys. Rev. B 9 5115

    [4]

    Laurent D, Wang C, Callaway J 1978 Phys. Rev. B 17 455

    [5]

    Jaiswal P, Shukla A 2007 Phys. Rev. A 75 022504

    [6]

    Kaneyasu T, Takabayashi Y, Iwasaki Y, Koda S 2011 Nucl. Instrum. Methods Phys. Res. A 659 30

    [7]

    Sun C, Wu Y K 2011 Phys. Rev. Accel. Beams 14 044701

    [8]

    Ge Y C 2009 Acta Phys. Sin. 58 3094 (in Chinese) [葛愉成 2009 物理学报 58 3094]

    [9]

    Wentzel G 1927 Z. Angew. Phys. 43 524

    [10]

    Du Mond J W M 1929 Phys. Rev. 33 643

    [11]

    Du Mond J W M 1933 Rev. Mod. Phys. 5 1

    [12]

    Eisenberger P, Platzman P 1970 Phys. Rev. A 2 415

    [13]

    Florescu V, Pratt R H 2009 Phys. Rev. A 80 033421

    [14]

    LaJohn L A 2010 Phys. Rev. A 81 043404

    [15]

    Pratt R H, LaJohn L A, Florescu V, Surić T, Chatterjee B K, Roy S C 2010 Radiat. Phys. Chem. 79 124

    [16]

    Huang Z, Kim, K.-J 2007 Phys. Rev. Spec. Top. Accel. Beams 10 034801

    [17]

    Young L, Kanter E P, Krassig B, Li Y, March A M, Pratt S T, Santra R, Southworth S H, Rohringer N, DiMauro L F, Doumy G, Roedig C A, Berrah N, Fang L, Hoener M, Bucksbaum P H, Cryan J P, Ghimire S, Glownia J M, Reis D A, Bozek J D, Bostedt C, Messerschmidt M 2010 Nat. 466 56

    [18]

    Hoener M, Fang L, Kornilov O, Gessner O, Pratt S T, Guhr M, Kanter E P, Blaga C, Bostedt C, Bozek J D, Bucksbaum P H, Buth C, Chen M, Coffee R, Cryan J, DiMauro L, Glownia M, Hosler E, Kukk E, Leone S R, McFarland B, Messerschmidt M, Murphy B, Petrovic V, Rolles D, Berrah N 2010 Phys. Rev. Lett. 104 253002

    [19]

    Fang L, Hoener M, Gessner O, Tarantelli F, Pratt S T, Kornilov O, Buth C,. Guhr M, Kanter E P, Bostedt C, Bozek J D, Bucksbaum P H, Chen M, Coffee R, Cryan J, Glownia M, Kukk E, Leone S R, Berrah N 2010 Phys. Rev. Lett. 105 083005

    [20]

    Yan J, Qin W, Chen Y, Decking W, Dijkstal P, Guetg M, Inoue I, Kujala N, Liu S, Long T, Mirian N, Geloni G 2024 Nat. Photon. 18 1293

    [21]

    Halavanau A, Decker F J, Emma C, Sheppard J, Pellegrini C 2019 J. Synchrotron Rad. 26 635

    [22]

    Pandey S, Bean R, Sato T, Poudyal I, Bielecki J, Villarreal J C, Yefanov O, Mariani V, White T A, Kupitz C, Hunter M, Abdellatif M H, Bajt S, Bondar V, Echelmeier A, Doppler D, Emons M, Frank M, Fromme R, Gevorkov Y, Giovanetti G, Jiang M, Kim D, Kim Y, Kirkwood H, Klimovskaia A, Knoska J, Koua F H M, Letrun R, Lisova S, Maia L, Mazalova V, Meza D, Michelat T, Ourmazd A, Palmer G, Ramilli M, Schubert R, Schwander P, Silenzi A, Dambietz J S, Tolstikova A, Chapman H N, Ros A, Barty A, Fromme P, Mancuso A P, Schmidt M 2020 Nat. Methods 17 73

    [23]

    Liu T, Huang N, Yang H, Qi Z, Zhang K, Gao Z, Chen S, Feng C, Zhang W, Luo H, Fu X, Liu H, Faatz B, Deng H, Liu B, Wang D, Zhao Z 2023 Front. Phys. 11 1172368

    [24]

    Kircher M, Trinter F, Grundmann S, Kastirke G, Weller M, Vela-Perez I, Khan A, Janke C, Waitz M, Zeller S, Mletzko T, Kirchner D, Honkimäki V, Houamer S, Chuluunbaatar O, Popov Y V, Volobuev I P, Schöffler M S, Schmidt L P H, Jahnke T, Dörner R 2022 Phys. Rev. Lett. 128 053001

    [25]

    Fuchs M, Trigo M, Chen J, Ghimire S, Shwartz S, Kozina M, Jiang M, Henighan T, Bray C, Ndabashimiye G, Bucksbaum P H, Feng Y, Herrmann S, Carini G A, Pines J, Hart P, Kenney C, Guillet S, Boutet S, Williams G J, Messerschmidt M, Seibert M M, Moeller S, Hastings J B, Reis D A 2015 Nat. Phys. 11 964

    [26]

    Hopersky A N, Nadolinsky A M, Novikov S A 2015 Phys. Rev. A 92 052709

    [27]

    Krebs D, Reis D A, Santra R 2019 Phys. Rev. A 99 022120

    [28]

    Venkatesh A, Robicheaux F 2020 Phys. Rev. A 101 013409

    [29]

    Shi S, Chen J, Yang Y, Yan Z C, Liu X, Wang B 2022 Opt. Express 30 1664

    [30]

    Dai D, Fu L 2022 Phys. Rev. A 105 013101

    [31]

    Gell-Mann M, Goldberger M L 1953 Phys. Rev. 91 398

    [32]

    Guo D S, Åberg T, Crasemann B 1989 Phys. Rev. A 40 4997

    [33]

    Gao L, Li X, Fu P, Freeman R R, Guo D S 2000 Phys. Rev. A 61 063407

    [34]

    Wang B, Gao L, Li X, Guo D S, Fu P 2007 Phys. Rev. A 75 063419

    [35]

    Wang B, Guo Y, Chen J, Yan Z C, Fu P 2012 Phys. Rev. A 85 023402

    [36]

    Chen Y J, Fu L B, Liu J 2013 Phys. Rev. Lett. 111 073902.

    [37]

    Zhong S, Liang Y, Wang S, Teng H, He X, Wei Z 2022 Futures 1 032201

    [38]

    He P L, He F 2015 Phys. Scr. 90 045402

    [39]

    Zhang K, Chen J, Hao X L, Fu P, Yan Z C, Wang B 2013 Phys. Rev. A 88 043435

    [40]

    Jin F, Li F, Chen J, Liu X, Wang B 2018 J. Phys. B: At. Mol. Opt. Phys. 51 245601

    [41]

    Guo Y, Fu P, Yan Z-C, Gong J, Wang B 2009 Phys. Rev. A 80 063408

    [42]

    Jin F, Tian Y, Chen J, Yang Y, Liu X, Yan Z-C, Wang B 2016 Phys. Rev. A 93 043417

    [43]

    Jin F, Chen J, Yang Y, Yan Z-C, Wang B 2016 J. Phys. B: At. Mol. Opt. Phys. 49 195602

    [44]

    Fang Y, Sun F-X, He Q, Liu Y 2023 Phys. Rev. Lett. 130 253201

    [45]

    Åberg T, Guo D S, Ruscheinski J, Crasemann B 1991 Phys. Rev. A 44 3169

    [46]

    Åberg T 1993 Phys. Scr. 1993 173

    [47]

    Hu X, Wang H, Guo D S 2008 Can. J. Phys. 86 863

    [48]

    Guo D S, Drake G W F 1992 J. Phys. A: Math. Gen. 25 3383

    [49]

    Guo D S, Drake G W F 1992 J. Phys. A: Math. Gen. 25 5377

    [50]

    Brown L S, Kibble T W B 1964 Phys. Rev. 133 A705

    [51]

    Klein O, Nishina Y 1929 Z. Angew. Phys. 52 853

    [52]

    Yan W C, Zhu C Q, Wang J G, Feng J, Li Y F, Tan J H, Chen L M 2021 Acta Phys. Sin. 70 084104 (in Chinese) [闫文超, 朱常青, 王进光, 冯杰, 李毅飞, 谭军豪, 陈黎明 2021 物理学报 70 084104]

  • [1] 王春杰, 关清帝, 姜文刚, 余青江, 解峰, 余功硕, 梁建峰, 李雪松, 徐江. 事件顺序重建对康普顿相机成像分辨的影响. 物理学报, doi: 10.7498/aps.74.20241723
    [2] 陈燕红, 王昭, 周泽贤, 陶科伟, 金雪剑, 史路林, 王国东, 喻佩, 雷瑜, 吴晓霞, 程锐, 杨杰. 利用质子能损诊断部分电离等离子体靶中的束缚电子密度. 物理学报, doi: 10.7498/aps.73.20231736
    [3] 董旭, 黄永盛, 唐光毅, 陈姗红, 司梅雨, 张建勇. 基于微波-电子康普顿背散射的环形正负电子对撞机束流能量测量方案. 物理学报, doi: 10.7498/aps.70.20202081
    [4] 张芝振, 李亮. X射线荧光CT成像中荧光产额、退激时间、散射、偏振等关键物理问题计算与分析. 物理学报, doi: 10.7498/aps.70.20210765
    [5] 宋张勇, 于得洋, 蔡晓红. 康普顿相机的成像分辨分析与模拟. 物理学报, doi: 10.7498/aps.68.20182245
    [6] 贾清刚, 张天奎, 许海波. 基于前冲康普顿电子高能伽马能谱测量系统设计. 物理学报, doi: 10.7498/aps.66.010703
    [7] 杨阳, 李秀坤. 水下目标声散射信号的时频域盲抽取. 物理学报, doi: 10.7498/aps.65.164301
    [8] 马永朋, 赵小利, 刘亚伟, 徐龙泉, 康旭, 倪冬冬, 闫帅, 朱林繁, 杨科. NO与C2H2的康普顿轮廓研究. 物理学报, doi: 10.7498/aps.64.153302
    [9] 古宇飞, 闫镔, 李磊, 魏峰, 韩玉, 陈健. 基于全变分最小化和交替方向法的康普顿散射成像重建算法. 物理学报, doi: 10.7498/aps.63.018701
    [10] 吴岱, 刘文鑫, 唐传祥, 黎明. 用于频域方法测量超短电子束纵向分布的Kramers-Krnig变换研究. 物理学报, doi: 10.7498/aps.60.082901
    [11] 孟现柱, 王明红, 任忠民. 基于椭圆超腔的高亮度激光同步辐射分析. 物理学报, doi: 10.7498/aps.59.1638
    [12] 胡海鑫, 张振华, 刘新海, 邱明, 丁开和. 石墨烯纳米带电子结构的紧束缚法研究. 物理学报, doi: 10.7498/aps.58.7156
    [13] 葛愉成. 激光-电子康普顿散射物理特性研究. 物理学报, doi: 10.7498/aps.58.3094
    [14] 王 薇, 张 杰, 赵 刚. 普朗克谱分布的辐射场对束缚电子布居的影响. 物理学报, doi: 10.7498/aps.57.1759
    [15] 叶子飘, 戴长江, 何会林. 束缚电子对7Be太阳中微子流量的影响. 物理学报, doi: 10.7498/aps.51.935
    [16] 陈学俊, 玉岩, 李波, 邓新元. 电子与原子(分子)碰撞的反散射理论. 物理学报, doi: 10.7498/aps.43.1759
    [17] 王晓, 蔡建华. 三维紧束缚电子气的等离激元理论. 物理学报, doi: 10.7498/aps.42.1149
    [18] 蒋祺, 陶瑞宝. 有任意带满的紧束缚哈密顿量的实空间重整化群研究. 物理学报, doi: 10.7498/aps.38.1778
    [19] 吕景发. 在相对论性电子上康普顿散射的极化自旋关联现象. 物理学报, doi: 10.7498/aps.21.1927
    [20] 徐永昌, 郑林生. 在γ-γ符合测量中康普顿散射所引起的符合. 物理学报, doi: 10.7498/aps.14.114
计量
  • 文章访问数:  32
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-12

/

返回文章
返回