-
高输出功率密度下的热积累问题是氮化镓基功率器件面临的关键瓶颈之一. 纳米晶金刚石钝化层策略在GaN基高功率器件散热方面发挥着重要的作用. 在硅基AlGaN/GaN异质结材料上制备了厚420—440 nm、晶粒尺寸330—380 nm的纳米晶金刚石薄膜, 制备了纳米晶金刚石钝化的GaN基横向肖特基二极管器件, 并对比研究了其与SiNx钝化器件的电学、热学性质. 测试结果显示, 在直流偏置下, 有无纳米晶钝化层的二极管器件正向特性基本一致; 在–20 V偏置电压下, 对两种器件施加2.5 V脉冲电压后, 纳米晶钝化二极管电流密度仅退化2.6%, 而SiNx钝化器件电学特性几乎完全退化, 表明纳米晶金刚石钝化二极管具有对电流崩塌现象优异的抑制能力; 在变直流功率条件下对两种器件的热成像显微观测结果显示, 发生热损毁时, SiNx钝化器件输出功率密度约4 W/mm, 而纳米晶钝化器件则约为7.5 W/mm. 本文是纳米晶金刚石钝化工艺在GaN基功率二极管散热应用的首次报道, 充分证明了该策略在GaN基功率二极管方面的应用潜力.Thermal accumulation under high output power density is one of the key bottlenecks faced by GaN-based power devices. The nanocrystalline diamond (NCD) passivation layer strategy plays a crucial role in improving heat dissipation in high-power GaN devices, while the existing studies focus on GaN-based HEMT. In this study, nanocrystalline diamond films with a thickness of 380–450 nm are grown on Si-based AlGaN/GaN heterostructure materials using a microwave plasma chemical vapor deposition (MPCVD) system. Consequently, lateral Schottky barrier diode devices with NCD passivation are fabricated, and their electrical and thermal properties are investigated. The results show that the DC forward characteristics of the NCD passivated diodes are essentially the same as those of devices without NCD passivation. Moreover, dynamic voltage tests indicate that the NCD passivation layer significantly mitigates current collapse in GaN devices at high frequencies. Under a –20 V DC bias and a pulse voltage of 2.5 V, the current density degradation of NCD passivated devices is only 2.6%, whereas devices without diamond passivation almost completely degrade. Thermal imaging microscopy under varying DC power levels shows that thermal failure occurs at an output power density of approximately 4 W/mm for conventional devices, while NCD passivated devices can reach around 7.5 W/mm. The electrical degradation behaviour of NCD passivated device is also tested under long-time reverse bias. This work demonstrates for the first time the application of nanocrystalline diamond passivation to thermal management of GaN-based power diodes, and clearly demonstrates the potential of this strategy in non-HEMT power device applications.
-
Keywords:
- nanocrystalline diamond /
- GaN /
- diode /
- heat dissipation








下载: