搜索

x
中国物理学会期刊

应变对单氢空位锗烷电子结构和输运性质的调控

CSTR: 32037.14.aps.74.20250529

Regulation of structural, electronic, and transport properties of single hydrogen vacancy germanane by strain

CSTR: 32037.14.aps.74.20250529
PDF
HTML
导出引用
  • 本文利用基于密度泛函理论的第一性原理计算方法, 研究了双轴应变对单氢空位锗烷电子结构及其输运特性的调控. 研究结果发现, 单氢空位缺陷态的引入不仅可在锗烷中产生类P型掺杂效应, 还可使锗烷发生无磁性到铁磁性的转变. –3%—3%双轴应变作用下, 单氢空位锗烷的键长、键角和褶皱高度与带隙均随应变呈线性变化; 当ε = 0.75%时, 类P型掺杂效应消失, 而进一步增大应变至ε = 2.5%时, 产生了类N型掺杂效应. 其机理分析表明, 双轴应变主要改变了费米能级、价带顶和导带底的能量, 使缺陷态能级发生了相对位置的移动, 使之成为受主能级或施主能级, 并产生受控于双轴应变的掺杂效应变化. 进一步的输运特性计算表明, 具有各向同性的单氢空位锗烷的I-V特性与电子有效质量也可线性的受控于双轴应变, 并导致其电子迁移率随之变化. 当ε = 3%时, 单氢空位锗烷的电导率与电子迁移率可分别增至3660 S/cm和24252 cm2/(V·s).

     

    The regulation of the electronic structure and transport properties of single-hydrogen-vacancy germanane by biaxial strain is investigated using first-principles calculations based on density functional theory in this work. The results reveal that the introduction of single-hydrogen-vacancy defect states not only induces P-type doping-like effects in germanane but also triggers off a transition from non-magnetic to ferromagnetic states. Under –3% to 3% biaxial strain, both the structural parameters (bond length, bond angle, and corrugation height) and the bandgap of single-hydrogen-vacancy germanane linearly vary with strain. The P-type doping-like effect disappears at ε = 0.75%, while an N-type doping-like effect appears when strain increases to ε = 2.5%. Mechanism analysis reveals that biaxial strain primarily modulates the energies of the Fermi level, valence band maximum, and conduction band minimum, causing the relative position of defect state energy levels to shift, making them become acceptor or donor energy levels, and producing doping effect changes regulated by biaxial strain. Transport property calculations further demonstrate that the isotropic I-V characteristics and electron effective mass of single-hydrogen-vacancy germanane can be linearly controlled by biaxial strain, leading to corresponding changes in electron mobility. At ε = 3%, the electrical conductivity and electron mobility of single-hydrogen-vacancy germanane increase significantly to 3660 S/cm and 24252 cm2/(V·s), respectively.

     

    目录

    /

    返回文章
    返回