-
通过数值求解单粒子定态Schrödinger方程和具有平均场相互作用的Gross-Pitaevskii方程,本文研究了旋转自旋-轨道角动量耦合玻色-爱因斯坦凝聚体的基态性质,发现基态涡旋的角动量与旋转频率、激光强度和自旋-轨道角动量耦合有关。当旋转频率小于临界值时,基态涡旋的角动量不受旋转频率的影响。当旋转频率超过临界值时,基态涡旋的角动量将随着旋转频率的增加而增加。
-
关键词:
- 自旋-轨道角动量耦合 /
- 玻色-爱因斯坦凝聚 /
- Gross-Pitaevskii方程
By numerically solving the single-particle stationary Schrödinger equation and the Gross-Pitaevskii equation with mean-field interactions at zero temperature, we have investigated the ground state properties of the rotating spinorbital-angular-momentum coupled Bose-Einstein condensates in a harmonic trapping potential. The results show that the rotation lifts the double degeneracy of the single-particle energy spectrum in the angular momentum space, and leads to the vortex state with a single angular momentum. The angular momentum of the vortex depends on the rotating frequency, the strength of the laser beam, and the spin-orbital-angular-momentum coupling. In particular, if the rotating frequency is below a critical value, the angular momentum of the ground state vortex remains unaffected by the rotating frequency. While the rotating frequency surpasses the critical value, the angular momentum of the ground state vortex will increase with the rotating frequency. By assuming that the system is confined in a ring trap, the expression of the single-particle energy spectrum in the angular momentum space can be obtained, which clarifies how the rotation frequency affects the angular momentum of the ground state. In the presence of the atomic interactions, similar phenomena can also be observed in the mean-field ground state at zero temperature.-
Keywords:
- Spin-orbital-angular-momentum-coupling /
- Bose-Einstein condensate /
- Gross-Pitaevskii equation
-
[1] Lin Y J, Jiménez-GarcÍa K, Spielman I B 2011 Nature 471 83
[2] Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301
[3] Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301
[4] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
[5] Wang C, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403
[6] Liu C F, Wan W J, Zhang G Y 2013 Acta Phys. Sin. 62 200306 (in Chinese)[刘超飞,万文娟,张 赣源 2013 物理学报 62 200306]
[7] Li J, Liu B, Bai J, Wang H Y, He T C 2020 Acta Phys. Sin. 69 140301 (in Chinese)[李吉, 刘斌, 白 晶, 王寰宇, 何天琛 2020 物理学报 69 140301]
[8] Wang Y, Cui J, Zhang H, Zhao Y, Xu S, Zhou Q 2024 Chin. Phys. Lett. 41 090302
[9] He J T, Fang P P, Lin J 2022 Chin. Phys. Lett. 39 020301
[10] Guo H, Qiu X, Ma Y, Jiang H F, Zhang X F 2021 Chin. Phys. B 30 060310
[11] Chen H R, Lin K Y, Chen P K, Chiu N C, Wang J B, Chen C A, Huang P P, Yip S K, Kawaguchi Y, Lin Y J 2018 Phys. Rev. Lett. 121 113204
[12] Chen P K, Liu L R, Tsai M J, Chiu N C, Kawaguchi Y, Yip S K, Chang M S, Lin Y J 2018 Phys. Rev. Lett. 121 250401
[13] Zhang D, Gao T, Zou P, Kong L, Li R, Shen X, Chen X L, Peng S G, Zhan M, Pu H, Jiang K 2019 Phys. Rev. Lett. 122 110402
[14] Duan Y, Bidasyuk Y M, Surzhykov A 2021 Phys. Rev. A 102 063328
[15] Chen K J, Wu F, Peng S G, Yi W, He L Y 2020 Phys. Rev. Lett. 125 260407
[16] Wang L L, Ji A C, Sun Q, Li J 2021 Phys. Rev. Lett. 126 193401
[17] Edmonds M 2021 Phys. Rev. A 104 043310
[18] Bidasyuk Y M, Kovtunenko K S, Prikhodko O O 2022 Phys. Rev. A 105 023320
[19] Cao R, Han J S, Wu J H, Yuan J M, He L Y, Li Y Q 2022 Phys. Rev. A 105 063308
[20] Chen K J, Wu F, Hu J, He L 2020 Phys. Rev. A 102 013316
[21] Chen X L, Peng S G, Zou P, Hu H 2020 Phys. Rev. Res. 2 033152
[22] Sun K, Qu C L, Zhang C W 2015 Phys. Rev. A 91 063627
[23] Chen L, Pu H, Zhang Y B 2016 Phys. Rev. A 96 013629
[24] Alexander L F 2009 Rev. Mod. Phys. 81 647
[25] Sunami S, Singh V P, Garrick D, Beregi A, Barker A J, Luksch K, Bentine E, Mathey L, Foot C J 2023 Science 382 443
[26] Lee K, Kim S, Kim T, Shin Y 2024 Nat. Phys. 20 1570
[27] Drori L, Das B C, Zohar T D, Winer G, Poem E, Poddubny A, Firstenberg O Science 381 193
[28] Zhang Z, Li F, Malpuech G, Zhang Y, Bleu O, Koniakhin S, Li C, Zhang Y, Xiao M, Solnyshkov D D 2019 Phys. Rev. Lett. 122 233905
[29] Shen J, Tang T, Wang L L 2011 Spectral Methods: Algorithms, Analysis and Applications (Berlin Springer)
[30] Liu W, Cai Y 2021 SIAM J. Sci. Comput. 43 B219
[31] Bao W, Cai Y 2018 Commun. Comput. Phys. 24 899
计量
- 文章访问数: 215
- PDF下载量: 14
- 被引次数: 0