-
本文采用密度泛函理论结合非平衡格林函数的第一性原理计算方法,计算了碳化硅(SiC)单链连接非对称双氢钝化锯齿型SiC纳米带上方、中上、中下和下方位置的四种分子器件的自旋极化电流-电压特性,开展非对称双氢钝化锯齿型SiC纳米带自旋器件设计与自旋输运性质研究.结果显示四种器件在P磁构型下的最大自旋电流值会依次减小,但是都能呈现单自旋方向的整流效应.SiC单链通过中下位置连接的器件自旋向上电流呈现性能最好的整流效应,最大整流比可以达到6.9×106.更重要的是,该器件自旋向上电流-电压曲线在负电压区间呈现出唯一的负微分电阻效应.此外,SiC单链通过中上位置连接的器件无论在P磁构型还是AP磁构型下都在负电压区间呈现完美的自旋过滤效应,自旋过滤效率接近100%.本文将自旋整流和自旋过滤以及自旋整流和负微分电阻分别集成到单个分子器件中,实现了具备两个功能的复合型自旋器件的理论设计,研究结果为今后实际制备和调控基于锯齿型SiC纳米带自旋器件提供了重要的解决方案.In this paper, the first-principles method based on density functional theory and non-equilibrium Green's function is used to design and investigate transport properties of multifunctional spintronic devices based on zigzag SiC nanoribbon via edge asymmetric dual-hydrogenation. The zigzag SiC nanoribbon via edge asymmetric dual-hydrogenation is selected as electrodes, and SiC atomic single chain are connected at the above, middle upper, middle lower, and below positions of the electrodes to form four molecular devices: M1, M2, M3 and M4. The study found that the maximum spin current value of the device in the P-magnetic configuration decreases sequentially as the connection position transitions from top to bottom. The spin-down current-voltage curves of M1, M2, and M4 exhibit significant spin rectification effects, with maximum rectification ratios of 9.8×105, 5.2×105, and 6.7×104, respectively. The spin-up current-voltage curve of M3 shows the best rectification effect, with a maximum rectification ratio of 6.9×106. More importantly, the spin-up current-voltage curve of M3 exhibits a unique negative differential resistance effect in the negative voltage range. The spin-up currents of the four devices in the AP magnetic configuration are very weak throughout the bias region and hardly changes with increasing voltage. Although there are differences in the spin-down current of the four devices within the positive and negative bias ranges, they are not significant, thus failing to exhibit excellent rectification effects. In addition, M2 exhibits perfect spin filtering effect in the negative voltage range in both P and AP magnetic configurations, with a spin filtering efficiency close to 100%. This article integrates spin rectification and spin filtering, as well as spin rectification and negative differential resistance, into a single molecular device, achieving the theoretical design of a composite spin device with two functions. The research results provide an important solution for the practical preparation and control of zigzag SiC nanoribbon spin devices in the future.
-
Keywords:
- SiC nanoribbon /
- Spin transport /
- Spin rectification /
- Spin filtering
-
[1] Allen M J, Tung V C, Kaner R B 2010Chem. Rev. 110 132
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004Science 306 666
[3] Ruiz-Puigdollers A, Gamallo P 2017Carbon 114 301
[4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005Nature 438 197
[5] Son Y W, Cohen M L, Louie S G 2006Phys. Rev. Lett. 97 216803
[6] Barone V, Hod O, Scuseria G E 2006Nano Lett. 6 2748
[7] Li X, Wang X, Zhang L, Lee S, Dai H 2008Science 319 1229
[8] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N 2006Science 312 1191
[9] Lee C, Wei X, Kysar J W, Hone J 2008Science 321 385
[10] Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Yang C H, Sun L, Zhu H L 2016Carbon 98 179
[11] Xing H Y, Zhang Z H, Wu W J, Guo Z Y, Ru J D 2023Acta Phys. Sin. 72 038502(in Chinese) [邢海英, 张子涵, 吴文静,郭志英,茹金豆2023物理学报72 038502]
[12] Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021Phys. Rev. B 104 045412
[13] Yuan L, Nerngchamnong N, Cao L, Hamoudi H, Del Barco E, Roemer M, Sriramula R K, Thompson D, Nijhuis C A 2015Nat. Commun. 6 6324
[14] Koga T, Nitta J, Takayanagi H, Datta S 2002Phys. Rev. Lett. 88 126601
[15] Zhang K B, Tan S H, Peng X F, Long M Q 2024Chin. Phys. Lett. 41 097301
[16] Gould C, Rüster C, Jungwirth T, Girgis E, Schott G, Giraud R, Brunner K, Schmidt G, Molenkamp L 2004Phys. Rev. Lett. 93 117203
[17] Sharma M, Wang S X, Nickel J H 1999Phys. Rev. Lett. 82 616
[18] Guan J, Chen W, Li Y, Yu G, Shi Z, Huang X, Sun C, Chen Z 2013Adv. Funct. Mater. 23 1507
[19] Zhao J, Zeng H, Wang D, Yao G 2020Appl. Sur. Sci. 519 146203
[20] Son Y W, Cohen M L, Louie S G 2006Nature 444 347
[21] Song Y, Wang C K, Chen G, Zhang G P 2021 Phys. Chem. Chem. Phys. 23 18760
[22] Wu M, Wu X, Zeng X C 2010J. Phys. Chem. C 114 3937
[23] Kan E J, Li Z, Yang J, Hou J 2007Appl. Phys. Lett. 91 243116
[24] Rezapour M R, Yun J, Lee G, Kim K S 2016JPCL 7 5049
[25] González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F, Brihuega I 2016Science 352 437
[26] Lopez-Urias F, Terrones M, Terrones H 2015Carbon 84 317
[27] Tang M, Yuan Z, Sun J, Sun X, He Y, Zhou X 2023Modell. Simul. Mater. Sci. Eng. 32 015008
[28] Lou P, Lee J Y 2009J. Phys. Chem. C 113 12637
[29] Li J J, Liu Q, Wu D, Deng X Q, Zhang Z H, Fan Z Q 2022Acta Phys. Sin. 71 078501(in Chinese) [李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强2022物理学报71 078501]
[30] Zeng J, Zhou Y H 2020Physica E 118 113861
[31] Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, De Heer W A 2010Nat. Nanotechnol. 5 727
[32] Li X B, Liu S Q, Huang Y, Ma Y, Ding W C 2025Acta Phys. Sin. 74 057101(in Chinese) [李晓波, 刘帅奇, 黄演, 马玉, 丁文策2025物理学报74 057101]
[33] Elasser A, Chow T P 2002Proc. IEEE 90 969
[34] Narushima T, Goto T, Hirai T, Iguchi Y 1997Mater. Trans. JIM 38 821
[35] Shi Z, Zhang Z, Kutana A, Yakobson B I 2015ACS nano 9 9802
[36] Lin X, Lin S, Xu Y, Hakro A A, Hasan T, Zhang B, Yu B, Luo J, Li E, Chen H 2013J. Mater. Chem. C 1 2131
[37] Islam M R, Islam M S, Ferdous N, Anindya K N, Hashimoto A 2019J. Comput. Electron. 18 407
[38] Chabi S, Kadel K 2020Nanomaterials 10 2226
[39] Bekaroglu E, Topsakal M, Cahangirov S, Ciraci S 2010Phys. Rev. B 81 075433
[40] Deng S L, Zhou W, Liu Q, Wu D, Fan Z Q, Xie F 2024Physica B 695 416586
[41] Ding Y, Wang Y 2012Appl. Phys. Lett. 101 013102
[42] Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020Org. Electron. 84 105808
[43] Cui X Q, Li J J, Liu Q, Wu D, Xie H Q, Fan Z Q, Zhang Z H 2022Physica E 138 115098
[44] Taghizade N, Faizabadi E 2021Mater. Sci. Eng. B 271 115253
[45] Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2019J. Phys. Condens. Matter 32 015901
[46] Büttiker M, Imry Y, Landauer R, Pinhas S 1985Phys. Rev. B 31 6207
计量
- 文章访问数: 41
- PDF下载量: 1
- 被引次数: 0