搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称双氢钝化锯齿型SiC纳米带复合功能自旋器件设计与输运研究

周文 彭淑平 邓淑玲 伍丹 范志强 张小姣

引用本文:
Citation:

非对称双氢钝化锯齿型SiC纳米带复合功能自旋器件设计与输运研究

周文, 彭淑平, 邓淑玲, 伍丹, 范志强, 张小姣

Design and Transport Properties of Multifunctional Spintronic Devices Based on Zigzag SiC Nanoribbon via Edge Asymmetric Dual-hydrogenation

Zhou Wen, Peng Shu-Ping, Deng Shu-Ling, Wu Dan, Fan Zhi-Qiang, Zhang Xiao-Jiao
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文采用密度泛函理论结合非平衡格林函数的第一性原理计算方法,计算了碳化硅(SiC)单链连接非对称双氢钝化锯齿型SiC纳米带上方、中上、中下和下方位置的四种分子器件的自旋极化电流-电压特性,开展非对称双氢钝化锯齿型SiC纳米带自旋器件设计与自旋输运性质研究.结果显示四种器件在P磁构型下的最大自旋电流值会依次减小,但是都能呈现单自旋方向的整流效应.SiC单链通过中下位置连接的器件自旋向上电流呈现性能最好的整流效应,最大整流比可以达到6.9×106.更重要的是,该器件自旋向上电流-电压曲线在负电压区间呈现出唯一的负微分电阻效应.此外,SiC单链通过中上位置连接的器件无论在P磁构型还是AP磁构型下都在负电压区间呈现完美的自旋过滤效应,自旋过滤效率接近100%.本文将自旋整流和自旋过滤以及自旋整流和负微分电阻分别集成到单个分子器件中,实现了具备两个功能的复合型自旋器件的理论设计,研究结果为今后实际制备和调控基于锯齿型SiC纳米带自旋器件提供了重要的解决方案.
    In this paper, the first-principles method based on density functional theory and non-equilibrium Green's function is used to design and investigate transport properties of multifunctional spintronic devices based on zigzag SiC nanoribbon via edge asymmetric dual-hydrogenation. The zigzag SiC nanoribbon via edge asymmetric dual-hydrogenation is selected as electrodes, and SiC atomic single chain are connected at the above, middle upper, middle lower, and below positions of the electrodes to form four molecular devices: M1, M2, M3 and M4. The study found that the maximum spin current value of the device in the P-magnetic configuration decreases sequentially as the connection position transitions from top to bottom. The spin-down current-voltage curves of M1, M2, and M4 exhibit significant spin rectification effects, with maximum rectification ratios of 9.8×105, 5.2×105, and 6.7×104, respectively. The spin-up current-voltage curve of M3 shows the best rectification effect, with a maximum rectification ratio of 6.9×106. More importantly, the spin-up current-voltage curve of M3 exhibits a unique negative differential resistance effect in the negative voltage range. The spin-up currents of the four devices in the AP magnetic configuration are very weak throughout the bias region and hardly changes with increasing voltage. Although there are differences in the spin-down current of the four devices within the positive and negative bias ranges, they are not significant, thus failing to exhibit excellent rectification effects. In addition, M2 exhibits perfect spin filtering effect in the negative voltage range in both P and AP magnetic configurations, with a spin filtering efficiency close to 100%. This article integrates spin rectification and spin filtering, as well as spin rectification and negative differential resistance, into a single molecular device, achieving the theoretical design of a composite spin device with two functions. The research results provide an important solution for the practical preparation and control of zigzag SiC nanoribbon spin devices in the future.
  • [1]

    Allen M J, Tung V C, Kaner R B 2010Chem. Rev. 110 132

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004Science 306 666

    [3]

    Ruiz-Puigdollers A, Gamallo P 2017Carbon 114 301

    [4]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005Nature 438 197

    [5]

    Son Y W, Cohen M L, Louie S G 2006Phys. Rev. Lett. 97 216803

    [6]

    Barone V, Hod O, Scuseria G E 2006Nano Lett. 6 2748

    [7]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008Science 319 1229

    [8]

    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N 2006Science 312 1191

    [9]

    Lee C, Wei X, Kysar J W, Hone J 2008Science 321 385

    [10]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Yang C H, Sun L, Zhu H L 2016Carbon 98 179

    [11]

    Xing H Y, Zhang Z H, Wu W J, Guo Z Y, Ru J D 2023Acta Phys. Sin. 72 038502(in Chinese) [邢海英, 张子涵, 吴文静,郭志英,茹金豆2023物理学报72 038502]

    [12]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021Phys. Rev. B 104 045412

    [13]

    Yuan L, Nerngchamnong N, Cao L, Hamoudi H, Del Barco E, Roemer M, Sriramula R K, Thompson D, Nijhuis C A 2015Nat. Commun. 6 6324

    [14]

    Koga T, Nitta J, Takayanagi H, Datta S 2002Phys. Rev. Lett. 88 126601

    [15]

    Zhang K B, Tan S H, Peng X F, Long M Q 2024Chin. Phys. Lett. 41 097301

    [16]

    Gould C, Rüster C, Jungwirth T, Girgis E, Schott G, Giraud R, Brunner K, Schmidt G, Molenkamp L 2004Phys. Rev. Lett. 93 117203

    [17]

    Sharma M, Wang S X, Nickel J H 1999Phys. Rev. Lett. 82 616

    [18]

    Guan J, Chen W, Li Y, Yu G, Shi Z, Huang X, Sun C, Chen Z 2013Adv. Funct. Mater. 23 1507

    [19]

    Zhao J, Zeng H, Wang D, Yao G 2020Appl. Sur. Sci. 519 146203

    [20]

    Son Y W, Cohen M L, Louie S G 2006Nature 444 347

    [21]

    Song Y, Wang C K, Chen G, Zhang G P 2021 Phys. Chem. Chem. Phys. 23 18760

    [22]

    Wu M, Wu X, Zeng X C 2010J. Phys. Chem. C 114 3937

    [23]

    Kan E J, Li Z, Yang J, Hou J 2007Appl. Phys. Lett. 91 243116

    [24]

    Rezapour M R, Yun J, Lee G, Kim K S 2016JPCL 7 5049

    [25]

    González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F, Brihuega I 2016Science 352 437

    [26]

    Lopez-Urias F, Terrones M, Terrones H 2015Carbon 84 317

    [27]

    Tang M, Yuan Z, Sun J, Sun X, He Y, Zhou X 2023Modell. Simul. Mater. Sci. Eng. 32 015008

    [28]

    Lou P, Lee J Y 2009J. Phys. Chem. C 113 12637

    [29]

    Li J J, Liu Q, Wu D, Deng X Q, Zhang Z H, Fan Z Q 2022Acta Phys. Sin. 71 078501(in Chinese) [李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强2022物理学报71 078501]

    [30]

    Zeng J, Zhou Y H 2020Physica E 118 113861

    [31]

    Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, De Heer W A 2010Nat. Nanotechnol. 5 727

    [32]

    Li X B, Liu S Q, Huang Y, Ma Y, Ding W C 2025Acta Phys. Sin. 74 057101(in Chinese) [李晓波, 刘帅奇, 黄演, 马玉, 丁文策2025物理学报74 057101]

    [33]

    Elasser A, Chow T P 2002Proc. IEEE 90 969

    [34]

    Narushima T, Goto T, Hirai T, Iguchi Y 1997Mater. Trans. JIM 38 821

    [35]

    Shi Z, Zhang Z, Kutana A, Yakobson B I 2015ACS nano 9 9802

    [36]

    Lin X, Lin S, Xu Y, Hakro A A, Hasan T, Zhang B, Yu B, Luo J, Li E, Chen H 2013J. Mater. Chem. C 1 2131

    [37]

    Islam M R, Islam M S, Ferdous N, Anindya K N, Hashimoto A 2019J. Comput. Electron. 18 407

    [38]

    Chabi S, Kadel K 2020Nanomaterials 10 2226

    [39]

    Bekaroglu E, Topsakal M, Cahangirov S, Ciraci S 2010Phys. Rev. B 81 075433

    [40]

    Deng S L, Zhou W, Liu Q, Wu D, Fan Z Q, Xie F 2024Physica B 695 416586

    [41]

    Ding Y, Wang Y 2012Appl. Phys. Lett. 101 013102

    [42]

    Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020Org. Electron. 84 105808

    [43]

    Cui X Q, Li J J, Liu Q, Wu D, Xie H Q, Fan Z Q, Zhang Z H 2022Physica E 138 115098

    [44]

    Taghizade N, Faizabadi E 2021Mater. Sci. Eng. B 271 115253

    [45]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2019J. Phys. Condens. Matter 32 015901

    [46]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985Phys. Rev. B 31 6207

  • [1] 彭淑平, 邓淑玲, 刘乾, 董丞骐, 范志强. N, B原子取代调控M-OPE分子器件的量子干涉与自旋输运. 物理学报, doi: 10.7498/aps.73.20240174
    [2] 彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强. 二噻吩硼烷异构体分子结构测定的第一性原理研究. 物理学报, doi: 10.7498/aps.72.20221973
    [3] 秦志杰, 张惠晴, 张广平, 任俊峰, 王传奎, 胡贵超, 邱帅. 通过边缘修饰在非磁性石墨烯基单分子结中引入自旋的理论研究. 物理学报, doi: 10.7498/aps.72.20230267
    [4] 田颖异, 王拴虎, 罗殿柄, 魏向洋, 金克新. 溶液旋涂法制备BixY3–xFe5O12薄膜的自旋输运特性. 物理学报, doi: 10.7498/aps.72.20221183
    [5] 张明媚, 郭亚涛, 付旭日, 李梦蕾, 任宝藏, 郑军, 袁瑞玚. 铁磁电极单层二硫化钼纳米带量子结构中的自旋开关效应和巨磁阻. 物理学报, doi: 10.7498/aps.72.20230483
    [6] 郑军, 马力, 相阳, 李春雷, 袁瑞旸, 陈箐. 不同方向局域交换场对锡烯自旋输运的影响. 物理学报, doi: 10.7498/aps.71.20220277
    [7] 李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强. 蒽二噻吩分子连接铁磁锯齿边碳化硅纳米带的巨幅度自旋整流. 物理学报, doi: 10.7498/aps.71.20212193
    [8] 李春雷, 徐燕, 郑军, 王小明, 袁瑞旸, 郭永. 磁电势垒结构中光场辅助电子自旋输运特性. 物理学报, doi: 10.7498/aps.69.20200237
    [9] 崔兴倩, 刘乾, 范志强, 张振华. 氧气分子吸附对单蒽分子器件自旋输运性质调控. 物理学报, doi: 10.7498/aps.69.20201028
    [10] 相阳, 郑军, 李春雷, 郭永. 局域交换场和电场调控的锗烯纳米带自旋过滤效应. 物理学报, doi: 10.7498/aps.68.20190817
    [11] 陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉. 基于石墨烯电极的Co-Salophene分子器件的自旋输运. 物理学报, doi: 10.7498/aps.66.198503
    [12] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能. 物理学报, doi: 10.7498/aps.65.068503
    [13] 贺泽龙, 白继元, 李鹏, 吕天全. T型双量子点分子Aharonov-Bohm干涉仪的电输运. 物理学报, doi: 10.7498/aps.63.227304
    [14] 白继元, 贺泽龙, 杨守斌. 平行耦合双量子点分子A-B干涉仪的电荷及其自旋输运. 物理学报, doi: 10.7498/aps.63.017303
    [15] 王辉, 胡贵超, 任俊峰. 扰动对有机磁体器件自旋极化输运特性的影响. 物理学报, doi: 10.7498/aps.60.127201
    [16] 胡长城, 王刚, 叶慧琪, 刘宝利. 瞬态自旋光栅系统的建设及其在自旋输运研究中的应用. 物理学报, doi: 10.7498/aps.59.597
    [17] 金莲, 朱林, 李玲, 谢征微. 多层结构双自旋过滤隧道结中的电子输运特性. 物理学报, doi: 10.7498/aps.58.8577
    [18] 王如志, 袁瑞玚, 宋雪梅, 魏金生, 严辉. 半导体超晶格系统中的磁电调控电子自旋输运研究. 物理学报, doi: 10.7498/aps.58.3437
    [19] 唐振坤, 王玲玲, 唐黎明, 游开明, 邹炳锁. 磁台阶势垒结构中二维电子气的自旋极化输运. 物理学报, doi: 10.7498/aps.57.5899
    [20] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究. 物理学报, doi: 10.7498/aps.52.2569
计量
  • 文章访问数:  41
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-13

/

返回文章
返回