To achieve multi-channel parallel transmission of complex signals and enhance spectral efficiency, this study presents a Rydberg atomic antenna system that can demonstrate multiplexed communication schemes. 852-nm and 509-nm lasers are used to excite cesium atoms into Rydberg states in a vapor cell, while employing differential detection techniques to suppress common-mode noise in order to obtain high signal-to-noise ratio electromagnetically induced transparency (EIT) spectra. Under weak electric field conditions, microwave field coupling causes atomic energy level shifts, resulting in two-photon detuning and rendering the EIT transmission intensity almost linearly dependent on the microwave electric field strength. Based on this effect, the integrated electrode configuration in the atomic cell generates a time-varying electric field, which can measure the waveforms, amplitudes, and frequencies of microwave and low-frequency electric fields. According to this principle, we decompose complex chaotic signals into three-dimensional orthogonal electric field components in order to demonstrate time-division multiplexing (TDM) of three-channel signals. Meanwhile, frequency-division multiplexing (FDM) is realized by modulating the
x -,
y -,
z - channels with 3 kHz, 5 kHz, and 4 kHz carriers, respectively. The quantitative analysis of the parameters related to the transmition signal and the reference signal reveals high-fidelity reconstruction, with the fidelity levels reaching 95% for TDM and 90% for FDM. These results validate the feasibility of using optical atomic antennas to reconstruct complex signal waveforms and emphasize the potential of Rydberg-based systems in high-performance electromagnetic field sensing and communication applications.