搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶合金熔体中的动力机械循环过程中非晶合金变形特征与年轻化机理研究

安婉莹 梁淑一 张浪渟 KATOHidemi 乔吉超

引用本文:
Citation:

非晶合金熔体中的动力机械循环过程中非晶合金变形特征与年轻化机理研究

安婉莹, 梁淑一, 张浪渟, KATOHidemi, 乔吉超

Deformation characteristic and rejuvenation mechanism of metallic glass during the mechanical cycling

AN Wanying, LIANG Shuyi, ZHANG Langting, KATO Hidemi, QIAO Jichao
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 物理老化很大程度上限制了非晶合金工程应用, 力学激励是一种有效的调控非晶合金能量状态并克服此问题的手段. 本文以Pd20Pt20Cu20Ni20P20非晶合金为模型体系, 使用动态力学分析仪开展高温线性机械循环-回复实验, 基于两相Kelvin模型和特征时间连续谱, 探索了非晶合金机械循环过程中的变形特征及年轻化机制. 结果表明, 机械循环过程中应变和应变速率随机械循环强度提高而增加, 循环加载耗散分量在热力学能量转换中起主导作用. 提高机械循环强度可促进黏弹性变形, 激活非晶合金固有的缺陷, 增加动力学非均匀性, 导致非晶合金变形更倾向于流动的液体. 借助差示扫描量热仪建立了非晶合金变形和能量状态的内禀性关联, 机械循环过程中年轻化起源于黏弹性应变诱导吸热过程. 相较于传统蠕变变形, 机械循环具有更高的年轻化潜力. 该研究为高温流变调控非晶合金的能量状态提供了理论依据, 为进一步理解非晶合金序微观结构非均匀性和年轻化之间的关联提供新的思路.
    Structural relaxation is significantly restricted. Notably, the dissipative component of cyclic loading dominates the thermodynamic energy of the practical applications of metallic glasses (MGs). Mechanical rejuvenation, achieved through cyclic loading, provides an effective approach for mitigating this problem. In this study, we systematically investigate the deformation characteristics and rejuvenation mechanism of Pd20Pt20Cu20Ni20P20 MG under mechanical cycling through dynamic mechanical analysis (DMA). By using a two-phase Kelvin model and continuous relaxation time spectrum, we elucidate the interplay between mechanical deformation and energy dissipation during cyclic loading. The experimental results demonstrate that the strain rate increases significantly with the increase of the intensity of mechanical cycling, indicating enhanced dynamic activity in the glassy matrix version. At higher cycling intensities, anelastic deformation is promoted, activating a broader spectrum of defects and amplifying dynamic heterogeneity. Through differential scanning calorimetry (DSC), we establish a quantitative correlation between deformation and energetic state, revealing that the rejuvenation originates from internal heating induced by anelastic strain. A comparative analysis with creep deformation reveals that mechanical cycling exhibits a superior rejuvenation potential, attributed to its ability to periodically excite multi-scale defect clusters and sustain non-equilibrium states. The main findings of this work include 1) Deformation mechanism: Cyclic loading enhances atomic mobility and facilitates deformation unit activation; 2) Energy landscape: The enthalpy change (ΔH) measured by DSC provides a direct metric for rejuvenation efficiency; 3) Dynamic heterogeneity: Mechanical cycling broadens the relaxation time spectrum, reflecting increased dynamic heterogeneity.
  • 图 1  (a)蠕变、(b)循环加载过程中能量耗散计算方式示意图

    Fig. 1.  Schematic diagram of (a) creep and (b) energy dissipation calculation methods during mechanical cycling.

    图 2  不同应力速率条件下机械循环过程中Pd20Pt20Cu20Ni20P20非晶合金 (a)应变、(b)蠕变耗能、(c)总应变耗能和(d)蠕变耗散分量权重系数随时间的演化

    Fig. 2.  Evolution of the weight coefficients of (a) strain, (b) creep energy, (c) total strain energy dissipation, and (d) creep dissipation component of Pd20Pt20Cu20Ni20P20 amorphous alloy during mechanical cycling at different stress rates.

    图 3  200 MPa/min条件下非晶合金的瞬时应力 (a)及其对应的拟合曲线(b); (c)应力ε值、(d)特征弛豫时间$ \tau $值、(e)斜率随时间的演化; (f)激活体积随应力速率的演化

    Fig. 3.  (a) Separation stress of amorphous alloy at 200 MPa/min and (b) its corresponding fitting curve; (c) stress value, (d) characteristic relaxation time value, (e) slope evolution over time; (f) evolution of activation volume with stress rate.

    图 4  (a)典型蠕变曲线及其对应的拟合曲线; (b) 25 MPa/min条件下非晶合金瞬时应力的高斯分布拟合结果; 拟合弛豫时间的(c)均值、(d)方差

    Fig. 4.  (a) Typical creep curves and their corresponding fitting curves; (b) Gaussian distribution fitting results of separation stress of amorphous alloys at 25 MPa/min; (c) means, (d) variance of fitted relaxation times.

    图 5  (a)应力速率200 MPa/min的样品机械循环-回复过程中黏弹性、黏塑性和能量损耗随回复时间演化过程, 插图为应力速率200 MPa/min的样品机械循环-回复过程中应变随时间的演化; (b)机械循环、蠕变分别回复8 h样品DSC曲线

    Fig. 5.  (a) Evolution of viscoelasticity, viscoplasticity and energy loss with response time during mechanical cycling-response of samples with a stress rate of 200 MPa/min, and the inset shows the evolution of strain with time during mechanical cycling-response of samples with a stress rate of 200 MPa/min; (b) DSC curves of samples responding to mechanical cycling and creep for 8 h, respectively.

  • [1]

    Zhou Z Y, Yang Q, Yu H B 2024 Prog. Mater. Sci. 145 101311Google Scholar

    [2]

    Li F, Zhang Z, Liu H, Zhu W, Wang T, Park M, Zhang J, Bönninghoff N, Feng X, Zhang H, Luan J, Wang J, Liu X, Chang T, Chu J P, Lu Y, Liu Y, Guan P, Yang Y 2024 Nat. Mater. 23 52Google Scholar

    [3]

    王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨 2024 物理学报 73 217101Google Scholar

    Wang Z, Jin F, Li W, Ruan J Y, Wang L F, Wu X L, Zhang Y K, Yuan C C 2024 Acta Phys. Sin. 73 217101Google Scholar

    [4]

    姜晓月, 黄志敏, 王璇, 张响, 杨卫明, 刘海顺 2025 物理学报 74 017501Google Scholar

    Jiang X Y, Huang Z M, Wang X, Zhang X, Yang W M, Liu H S 2025 Acta Phys. Sin. 74 017501Google Scholar

    [5]

    Şopu D, Yuan X, Spieckermann F, Eckert J 2024 Acta Mater. 275 120033Google Scholar

    [6]

    梁淑一, 张浪渟, 朱航辰, 邢光辉, 乔吉超 2025 物理学报 74 136401Google Scholar

    Liang S Y, Zhang L T, Zhu H C, Xing G H, Qiao J C 2025 Acta Phys. Sin. 74 136401Google Scholar

    [7]

    Deshmukh A A, Ranganathan R 2025 J. Mater. Sci. Technol. 204 127Google Scholar

    [8]

    Yang C, Zhou H B, Duan J, Cai S L, Ding G, Zhang B B, Shi C J, Dai L H, Wilde G, Jiang M Q 2025 Fundam. Res. https://doi.org/10.1016/j.fmre.2025.03.008

    [9]

    Houghton O S, Greer A L 2025 Acta Mater. 288 120862Google Scholar

    [10]

    Riechers B, Das A, Rashidi R, Dufresne E, Maaß R 2025 Mater. Today 82 92Google Scholar

    [11]

    Balal A H, Bian X L, Han D X, Jia Y F, Ali S, Jia Y D, Wang G 2024 Mater. Charact. 212 113977Google Scholar

    [12]

    Yang Y, Geng J, Cao Y, Fan L, Shi B 2025 Scr. Mater. 256 116418Google Scholar

    [13]

    Yang Z Y, Dai L H 2022 Phys Rev. Mater. 6 L100602Google Scholar

    [14]

    Cheng Y, Shen Y, An Q, Jiang M, Huang C, Goddard W A, Wu X 2025 Extreme Mech. Lett. 74 102280Google Scholar

    [15]

    Wang C, Yu J, Lai J, Wang B, Zhao F, Jiang Z, Xiao Z 2025 Appl. Surf. Sci. 686 162105Google Scholar

    [16]

    Li X X, Wang J G, Ke H B, Yang C, Wang W H 2022 Mater. Today Phys. 27 100782Google Scholar

    [17]

    Pan J, Wang Y X, Guo Q, Zhang D, Greer A L, Li Y 2018 Nat. Commun. 9 560Google Scholar

    [18]

    Ross P, Küchemann S, Derlet P M, Yu H, Arnold W, Liaw P, Samwer K, Maass R 2017 Acta Mater. 138 111Google Scholar

    [19]

    Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar

    [20]

    Costa M B, Londoño J J, Blatter A, Hariharan A, Gebert A, Carpenter M A, Greer A L 2023 Acta Mater. 244 118551Google Scholar

    [21]

    Gao Y, Ding G, Yang C, Zhang B B, Shi C J, Dai L H, Jiang M Q 2023 J. Non-Cryst. Solids 615 122410Google Scholar

    [22]

    Zhang L T, Wang Y J, Pineda E, Yang Y, Qiao J C 2022 Int. J. Plast. 157 103402Google Scholar

    [23]

    Sun Y H, Concustell A, Greer A L 2016 Nat. Rev. Mater. 1 16039Google Scholar

    [24]

    Liang S Y, Zhang L T, Wang B, Wang Y J, Yang Y, Pineda E, Qiao J C 2025 International Journal of Mechanical Sciences 302 110573Google Scholar

    [25]

    Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, Yeh J W 2011 Intermetallics 19 1546Google Scholar

    [26]

    Wu Y, Ertekin E, Sehitoglu H 2017 Acta Mater. 135 158Google Scholar

    [27]

    Xing G H, Hao Q, Lü G J, Zhu F, Wang Y J, Yang Y, Pineda E, Qiao J C 2025 J. Mater. Sci. Technol. 218 135Google Scholar

    [28]

    Zhang L T, Wang Y J, Yang Y, Wada T, Kato H, Qiao J C 2024 Int. J. Mech. Sci. 281 109661Google Scholar

    [29]

    Khonik V, Kobelev N 2019 Metal 9 605Google Scholar

    [30]

    Qiao J C, Chen Y X, Pelletier J M, Kato H, Crespo D, Yao Y, Khonik V A 2018 Mater. Sci. Eng. 719 164Google Scholar

    [31]

    Wang Z, Wang W H 2018 Nat. Sci. Rev. 6 304

    [32]

    Şopu D 2023 J. Alloys Compd. 960 170585Google Scholar

    [33]

    Wang Q, Zhang S T, Yang Y, Dong Y D, Liu C T, Lu J 2015 Nat. Commun. 6 7876Google Scholar

    [34]

    Schuh C A, Lund A C, Nieh T G 2004 Acta Mater. 52 5879Google Scholar

    [35]

    Yu P F, Feng S D, Xu G S, Guo X L, Wang Y Y, Zhao W, Qi L, Li G, Liaw P K, Liu R P 2014 Scr. Mater. 90 45

    [36]

    Liang S Y, Zhang L T, Wang Y J, Wang B, Pelletier J M, Qiao J C 2024 Int. J. Fatigue 187 108446Google Scholar

    [37]

    Liang S Y, Zhu F, Wang Y J, Pineda E, Wada T, Kato H, Qiao J C 2024 Int. J. Eng. Sci. 205 104146Google Scholar

    [38]

    Castellero A, Moser B, Uhlenhaut D I, Torre F H D, Löffler J F 2008 Acta Mater. 56 3777Google Scholar

    [39]

    Yuan C C, Lv Z W, Li X, Pang C M, Liu R, Yang C, Ma J, Zhu W W, Huang B, Ke H B 2023 Intermetallics 153 107803Google Scholar

    [40]

    Zhang L T, Wang Y J, Nabahat M, Pineda E, Yang Y, Pelletier J M, Crespo D, Qiao J C 2024 Int. J. Plast. 174 103923Google Scholar

    [41]

    Zhang L T, Wang Y J, Pineda E, Kato H, Yang Y, Qiao J C 2022 Scr. Mater. 214 114673Google Scholar

    [42]

    Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81Google Scholar

    [43]

    Ge T P, Wang W H, Bai H Y 2016 J. Appl. Phys. 119 204905Google Scholar

    [44]

    Tsai P, Kranjc K, Flores K M 2017 Acta Mater. 139 11Google Scholar

    [45]

    Zella L, Moon J, Keffer D, Egami T 2022 Acta Mater. 239 118254Google Scholar

    [46]

    Monnier X, Cangialosi D, Ruta B, Busch R, Gallino I 2020 Sci. Adv. 6 eaay1454Google Scholar

    [47]

    Luo Q, Zhang Z, Li D, Luo P, Wang W, Shen B 2022 Nano Lett. 22 2867Google Scholar

    [48]

    Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine Luzgin D V, Carpenter M A, Greer A L 2015 Nature 524 200Google Scholar

  • [1] 梁淑一, 张浪渟, 朱航辰, 邢光辉, 乔吉超. 非晶合金高温流变行为与动力学弛豫耦合机理. 物理学报, doi: 10.7498/aps.74.20250392
    [2] 孟绍怡, 郝奇, 王兵, 段亚娟, 乔吉超. 冷却速率对La基非晶合金β弛豫行为和应力弛豫的影响. 物理学报, doi: 10.7498/aps.73.20231417
    [3] 程琪, 孙永昊, 汪卫华. 超快差示扫描量热数据的俯视法分析. 物理学报, doi: 10.7498/aps.73.20232027
    [4] 黄蓓蓓, 郝奇, 吕国建, 乔吉超. 锆基非晶合金的动态弛豫和应力松弛. 物理学报, doi: 10.7498/aps.72.20230181
    [5] 孟绍怡, 郝奇, 吕国建, 乔吉超. La基非晶合金β弛豫行为: 退火和加载应变的影响. 物理学报, doi: 10.7498/aps.72.20222389
    [6] 姜文龙. 非晶聚苯乙烯和Pd40Ni10Cu30P20玻璃化转变中比热变化的机理和定量研究. 物理学报, doi: 10.7498/aps.69.20200331
    [7] 武振伟, 汪卫华. 非晶态物质原子局域连接度与弛豫动力学. 物理学报, doi: 10.7498/aps.69.20191870
    [8] 金肖, 王利民. 非晶材料玻璃转变过程中记忆效应的热力学. 物理学报, doi: 10.7498/aps.66.176406
    [9] 汤依伟, 艾亮, 程昀, 王安安, 李书国, 贾明. 锂离子动力电池高倍率充放电过程中弛豫行为的仿真. 物理学报, doi: 10.7498/aps.65.058201
    [10] 金鑫鑫, 金峰, 刘宁, 孙其诚. 准静态颗粒介质的弹性势能弛豫分析. 物理学报, doi: 10.7498/aps.65.096102
    [11] 孙其诚, 刘传奇, 周公旦. 颗粒介质弹性的弛豫. 物理学报, doi: 10.7498/aps.64.236101
    [12] 卢敏, 许卫兵, 刘维清, 侯春菊, 刘志勇. 银纳米杆高温熔化断裂弛豫性能的原子级模拟研究. 物理学报, doi: 10.7498/aps.59.6377
    [13] 许 峰, 刘堂晏, 黄永仁. 油水饱和球管孔隙模型弛豫的理论计算与计算机模拟. 物理学报, doi: 10.7498/aps.57.550
    [14] 周正存, 赵宏平, 顾苏怡, 吴 倩. 快冷Fe-Al合金中的原子缺陷弛豫. 物理学报, doi: 10.7498/aps.57.1025
    [15] 王海龙, 王秀喜, 王 宇, 梁海弋. 非晶Ti3Al合金的变形晶化机理的原子模拟. 物理学报, doi: 10.7498/aps.56.1489
    [16] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化. 物理学报, doi: 10.7498/aps.56.999
    [17] 许 峰, 刘堂晏, 黄永仁. 射频场照射下多自旋体系弛豫的理论计算. 物理学报, doi: 10.7498/aps.55.3054
    [18] 程伟东, 孙民华, 李佳云, 王爱屏, 孙永丽, 刘 芳, 刘雄军. Cu60Zr30Ti10非晶合金弛豫和晶化过程的小角X射线散射研究. 物理学报, doi: 10.7498/aps.55.6673
    [19] 许峰, 黄永仁. 射频场照射下同核体系的弛豫. 物理学报, doi: 10.7498/aps.51.415
    [20] 周效锋, 陶淑芬, 刘佐权, 阚家德, 李德修. Fe73.5Cu1Nb3Si13.5B9非晶合金的激波纳米晶化速率和晶化度的对比研究. 物理学报, doi: 10.7498/aps.51.322
计量
  • 文章访问数:  481
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-25
  • 修回日期:  2025-05-29
  • 上网日期:  2025-06-11

/

返回文章
返回