搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机械循环过程中非晶合金变形特征与年轻化机理研究

安婉莹 梁淑一 张浪渟 Kato Hidemi 乔吉超

引用本文:
Citation:

机械循环过程中非晶合金变形特征与年轻化机理研究

安婉莹, 梁淑一, 张浪渟, Kato Hidemi, 乔吉超

Deformation characteristic and rejuvenation mechanism of a metallic glass during the mechanical cycling processes

An Wanying, Liang Shuyi, Zhang Langting, Kato Hidemi, Qiao Jichao
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 物理老化很大程度上限制了非晶合金工程应用,力学激励是一种有效调控非晶合金能量状态并克服此问题的手段.本文以Pd20Pt20Cu20Ni20P20非晶合金为模型体系,使用动态力学分析仪开展高温线性机械循环-回复实验,基于两相Kelvin模型和特征时间连续谱,探索了非晶合金机械循环过程中的变形特征及年轻化机制.结果表明,机械循环过程中应变和应变速率随机械循环强度提高而增加,循环加载耗散分量在热力学能量转换中起主导作用.提高机械循环强度可促进粘弹性变形,激活非晶合金固有的缺陷,增加动力学非均匀性,导致非晶合金变形更倾向于流动的液体.借助差示扫描量热仪建立了非晶合金变形和能量状态的内禀性关联,机械循环过程中年轻化起源于粘弹性应变诱导吸热过程.相较于传统蠕变变形,机械循环具有更高的年轻化潜力.该研究为高温流变调控非晶合金的能量状态提供了理论依据,为进一步理解非晶合金序微观结构非均匀性和年轻化之间的关联提供新的思路.
    Structural relaxation is significantly restrict. Notably, the dissipative component of cyclic loading dominates the thermodynamic energy of the practical applications of metallic glasses (MGs). Mechanical rejuvenation, achieved through cyclic loading, provides an effective approach to mitigate this issue. In this study, we systematically investigate the deformation characteristics and rejuvenation mechanisms of Pd20Pt20Cu20Ni20P20 MG under mechanical cycling using dynamic mechanical analysis (DMA). By employing a two-phase Kelvin model and continuous relaxation time spectrum, we elucidate the interplay between mechanical deformation and energy dissipation during cyclic loading. The experimental results demonstrate that the strain rate increases significantly with the intensity of mechanical cycling, indicating enhanced dynamic activity in the glassy matrix version. At higher cycling intensities, anelastic deformation is promoted, activating a broader spectrum of defects and amplifying dynamic heterogeneity. Through differential scanning calorimetry (DSC), we establish a quantitative correlation between deformation and energetic state, revealing that rejuvenation originates from internal heating induced by anelastic strain. A comparative analysis with creep deformation reveals that mechanical cycling exhibits superior rejuvenation potential, attributed to its ability to periodically excite multi-scale defect clusters and sustain non-equilibrium states. The key findings of this work include: (1) Deformation mechanism: Cyclic loading enhances atomic mobility and facilitates deformation unit activation. (2) Energy landscape: The enthalpy change (ΔH) measured by DSC provides a direct metric for rejuvenation efficiency. (3) Dynamic heterogeneity: Mechanical cycling broadens the relaxation time spectrum, reflecting increased dynamic heterogeneity.
  • [1]

    Zhou Z Y, Yang Q, Yu H B 2024 Prog. Mater. Sci. 145 101311

    [2]

    Li F, Zhang Z, Liu H, Zhu W, Wang T, Park M, Zhang J, Bönninghoff N, Feng X, Zhang H, Luan J, Wang J, Liu X, Chang T, Chu J P, Lu Y, Liu Y, Guan P, Yang Y 2024 Nat. Mater 23 52

    [3]

    Wang Z, Jin F, Li W, Ruan J Y, Wang L F, Wu X L, Zhang Y K, Yuan C C 2024 Acta Phys. Sin. 73 217101

    [4]

    Jiang X, Huang Z, Wang X, Zhang X, Yang W, Liu H 2025 Acta Phys. Sin. 74 017501

    [5]

    Şopu D, Yuan X, Spieckermann F, Eckert J 2024 Acta Mater. 275 120033

    [6]

    Liang S Y, Zhang L T, Zhu H C, Xing G H, Qiao Ji C 2025 Acta Phys. Sin. 74

    [7]

    Deshmukh A A, Ranganathan R 2025 J. Mat. Sci. Technol. 204 127

    [8]

    Yang C, Zhou H B, Duan J, Cai S L, Ding G, Zhang B B, Shi C J, Dai L H, Wilde G, Jiang M Q 2025 Fundam. Res.

    [9]

    Houghton O S, Greer A L 2025 Acta Mater. 288 120862

    [10]

    Riechers B, Das A, Rashidi R, Dufresne E, Maaß R 2025 Mater. Today 82 92

    [11]

    Balal A H, Bian X L, Han D X, Jia Y F, Ali S, Jia Y D, Wang G 2024 Mater. Charact. 212 113977

    [12]

    Yang Y, Geng J, Cao Y, Fan L, Shi B 2025 Scr. Mater. 256 116418

    [13]

    Yang Z Y, Dai L H 2022 Phys Rev. Mater. 6 L100602

    [14]

    Cheng Y, Shen Y, An Q, Jiang M, Huang C, Goddard W A, Wu X 2025 Extreme Mech. Lett. 74 102280

    [15]

    Wang C, Yu J, Lai J, Wang B, Zhao F, Jiang Z, Xiao Z 2025 Appl. Surf. Sci. 686 162105

    [16]

    Li X X, Wang J G, Ke H B, Yang C, Wang W H 2022 Mater. Today Phys. 27 100782

    [17]

    Pan J, Wang Y X, Guo Q, Zhang D, Greer A L, Li Y 2018 Nat. Commun. 9 560

    [18]

    Ross P, Küchemann S, Derlet P M, Yu H, Arnold W, Liaw P, Samwer K, Maaß R 2017 Acta Mater. 138 111

    [19]

    Wang W H 2019 Prog. Mater. Sci. 106 100561

    [20]

    Costa M B, Londoño J J, Blatter A, Hariharan A, Gebert A, Carpenter M A, Greer A L 2023 Acta Mater. 244 118551

    [21]

    Gao Y, Ding G, Yang C, Zhang B B, Shi C J, Dai L H, Jiang M Q 2023 J. Non·Cryst. Solids 615 122410

    [22]

    Zhang L T, Wang Y J, Pineda E, Yang Y, Qiao J C 2022 Int. J. Plast. 157 103402

    [23]

    Sun Y H, Concustell A, Greer A L 2016 Nat. Rev. Mater 1 16039

    [24]

    Liang S Y, Zhang L T, Wang B, Wang Y J, Pineda E, Qiao J C 2024 Intermetallics 164 108115

    [25]

    Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, Yeh J W 2011 Intermetallics 19 1546

    [26]

    Wu Y, Ertekin E, Sehitoglu H 2017 Acta Mater. 135 158

    [27]

    Xing G H, Hao Q, Lyu G J, Zhu F, Wang Y J, Yang Y, Pineda E, Qiao J C 2025 J. Mater. Sci. Technol. 218 135

    [28]

    Zhang L T, Wang Y J, Yang Y, Wada T, Kato H, Qiao J C 2024 Int. J. Mech. Sci. 281 109661

    [29]

    Khonik V, Kobelev N 2019 9 605

    [30]

    Qiao J C, Chen Y X, Pelletier J M, Kato H, Crespo D, Yao Y, Khonik V A 2018 Mater. Sci. Eng. 719 164

    [31]

    Wang Z, Wang W H 2018 Nat. Sci. Rev. 6 304

    [32]

    Şopu D 2023 J. Alloys Compd. 960 170585

    [33]

    Wang Q, Zhang S T, Yang Y, Dong Y D, Liu C T, Lu J 2015 Nat. Commun. 6 7876

    [34]

    Schuh C A, Lund A C, Nieh T G 2004 Acta Mater. 52 5879

    [35]

    Yu P F, Feng S D, Xu G S, Guo X L, Wang Y Y, Zhao W, Qi L, Li G, Liaw P K, Liu R P 2014 Scr. Mater. 90-91 45

    [36]

    Liang S Y, Zhang L T, Wang Y J, Wang B, Pelletier J M, Qiao J C 2024 Int. J. Fatigue 187 108446

    [37]

    Liang S Y, Zhu F, Wang Y J, Pineda E, Wada T, Kato H, Qiao J C 2024 Int. J. Eng. Sci. 205 104146

    [38]

    Castellero A, Moser B, Uhlenhaut D I, Torre F H D, Löffler J F 2008 Acta Mater. 56 3777

    [39]

    Yuan C C, Lv Z W, Li X, Pang C M, Liu R, Yang C, Ma J, Zhu W W, Huang B, Ke H B 2023 Intermetallics 153 107803

    [40]

    Zhang L T, Wang Y J, Nabahat M, Pineda E, Yang Y, Pelletier J M, Crespo D, Qiao J C 2024 Int. J. Plast. 174 103923

    [41]

    Zhang L T, Wang Y J, Pineda E, Kato H, Yang Y, Qiao J C 2022 Scr. Mater. 214 114673

    [42]

    Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81

    [43]

    Ge T P, Wang W H, Bai H Y 2016 J. Appl. Phys. 119

    [44]

    Tsai P, Kranjc K, Flores K M 2017 Acta Mater. 139 11

    [45]

    Zella L, Moon J, Keffer D, Egami T 2022 Acta Mater. 239 118254

    [46]

    Monnier X, Cangialosi D, Ruta B, Busch R, Gallino I 2020 6 eaay1454

    [47]

    Luo Q, Zhang Z, Li D, Luo P, Wang W, Shen B 2022 Nano Lett. 22 2867

    [48]

    Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine Luzgin D V, Carpenter M A, Greer A L 2015 Nature 524 200

  • [1] 梁淑一, 张浪渟, 朱航辰, 邢光辉, 乔吉超. 非晶合金高温流变行为与动力学弛豫耦合机理研究. 物理学报, doi: 10.7498/aps.74.20250392
    [2] 孟绍怡, 郝奇, 王兵, 段亚娟, 乔吉超. 冷却速率对La基非晶合金β弛豫行为和应力弛豫的影响. 物理学报, doi: 10.7498/aps.73.20231417
    [3] 程琪, 孙永昊, 汪卫华. 超快差示扫描量热数据的俯视法分析. 物理学报, doi: 10.7498/aps.73.20232027
    [4] 黄蓓蓓, 郝奇, 吕国建, 乔吉超. 锆基非晶合金的动态弛豫和应力松弛. 物理学报, doi: 10.7498/aps.72.20230181
    [5] 孟绍怡, 郝奇, 吕国建, 乔吉超. La基非晶合金β弛豫行为: 退火和加载应变的影响. 物理学报, doi: 10.7498/aps.72.20222389
    [6] 姜文龙. 非晶聚苯乙烯和Pd40Ni10Cu30P20玻璃化转变中比热变化的机理和定量研究. 物理学报, doi: 10.7498/aps.69.20200331
    [7] 武振伟, 汪卫华. 非晶态物质原子局域连接度与弛豫动力学. 物理学报, doi: 10.7498/aps.69.20191870
    [8] 金肖, 王利民. 非晶材料玻璃转变过程中记忆效应的热力学. 物理学报, doi: 10.7498/aps.66.176406
    [9] 汤依伟, 艾亮, 程昀, 王安安, 李书国, 贾明. 锂离子动力电池高倍率充放电过程中弛豫行为的仿真. 物理学报, doi: 10.7498/aps.65.058201
    [10] 金鑫鑫, 金峰, 刘宁, 孙其诚. 准静态颗粒介质的弹性势能弛豫分析. 物理学报, doi: 10.7498/aps.65.096102
    [11] 孙其诚, 刘传奇, 周公旦. 颗粒介质弹性的弛豫. 物理学报, doi: 10.7498/aps.64.236101
    [12] 卢敏, 许卫兵, 刘维清, 侯春菊, 刘志勇. 银纳米杆高温熔化断裂弛豫性能的原子级模拟研究. 物理学报, doi: 10.7498/aps.59.6377
    [13] 许 峰, 刘堂晏, 黄永仁. 油水饱和球管孔隙模型弛豫的理论计算与计算机模拟. 物理学报, doi: 10.7498/aps.57.550
    [14] 周正存, 赵宏平, 顾苏怡, 吴 倩. 快冷Fe-Al合金中的原子缺陷弛豫. 物理学报, doi: 10.7498/aps.57.1025
    [15] 王海龙, 王秀喜, 王 宇, 梁海弋. 非晶Ti3Al合金的变形晶化机理的原子模拟. 物理学报, doi: 10.7498/aps.56.1489
    [16] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化. 物理学报, doi: 10.7498/aps.56.999
    [17] 许 峰, 刘堂晏, 黄永仁. 射频场照射下多自旋体系弛豫的理论计算. 物理学报, doi: 10.7498/aps.55.3054
    [18] 程伟东, 孙民华, 李佳云, 王爱屏, 孙永丽, 刘 芳, 刘雄军. Cu60Zr30Ti10非晶合金弛豫和晶化过程的小角X射线散射研究. 物理学报, doi: 10.7498/aps.55.6673
    [19] 许峰, 黄永仁. 射频场照射下同核体系的弛豫. 物理学报, doi: 10.7498/aps.51.415
    [20] 周效锋, 陶淑芬, 刘佐权, 阚家德, 李德修. Fe73.5Cu1Nb3Si13.5B9非晶合金的激波纳米晶化速率和晶化度的对比研究. 物理学报, doi: 10.7498/aps.51.322
计量
  • 文章访问数:  47
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-11

/

返回文章
返回