搜索

x
中国物理学会期刊

动力机械循环过程中非晶合金变形特征与年轻化机理研究

CSTR: 32037.14.aps.74.20250563

Deformation characteristic and rejuvenation mechanism of amorphous alloy during the mechanical cycling

CSTR: 32037.14.aps.74.20250563
PDF
HTML
导出引用
  • 物理老化很大程度上限制了非晶合金工程应用, 力学激励是一种有效的调控非晶合金能量状态并克服此问题的手段. 本文以Pd20Pt20Cu20Ni20P20非晶合金为模型体系, 使用动态力学分析仪开展高温线性机械循环-回复实验, 基于两相Kelvin模型和特征时间连续谱, 探索了非晶合金机械循环过程中的变形特征及年轻化机制. 结果表明, 机械循环过程中应变和应变速率随机械循环强度提高而增加, 循环加载耗散分量在热力学能量转换中起主导作用. 提高机械循环强度可促进黏弹性变形, 激活非晶合金固有的缺陷, 增加动力学非均匀性, 导致非晶合金变形更倾向于流动的液体. 借助差示扫描量热仪建立了非晶合金变形和能量状态的内禀性关联, 机械循环过程中年轻化起源于黏弹性应变诱导吸热过程. 相较于传统蠕变变形, 机械循环具有更高的年轻化潜力. 该研究为高温流变调控非晶合金的能量状态提供了理论依据, 为进一步理解非晶合金序微观结构非均匀性和年轻化之间的关联提供新的思路.

     

    The engineering applications of amorphous alloys are largely restricted by structural relaxation. Notably, the dissipative component of cyclic loading dominates the thermodynamic energy in practical applications of amorphous alloys. Mechanical rejuvenation, achieved through cyclic loading, offers an effective solution to this problem. In this study, we systematically investigate the deformation characteristics and rejuvenation mechanism of Pd20Pt20Cu20Ni20P20 amorphous alloy under mechanical cycling using dynamic mechanical analysis (DMA). By employing a two-phase Kelvin model and continuous relaxation time spectrum, we elucidate the interplay between mechanical deformation and energy dissipation during cyclic loading. The experimental results demonstrate that the strain rate increases significantly with the intensity of mechanical cycling, indicating enhanced dynamic activity in the glassy matrix. At higher cycling intensities, anelastic deformation is promoted, activating a broader spectrum of defects and amplifying dynamic heterogeneity. Through differential scanning calorimetry (DSC), we establish a quantitative correlation between deformation and energetic state, revealing that rejuvenation originates from internal heating induced by anelastic strain. A comparative analysis with creep deformation reveals that mechanical cycling exhibits a superior rejuvenation potential, attributed to its ability to periodically excite multi-scale defect clusters and sustain non-equilibrium states. The key findings of this work include: 1) Deformation mechanism: Cyclic loading enhances atomic mobility and facilitates deformation unit activation; 2) Energy landscape: The enthalpy change (ΔH) measured by DSC provides a direct metric for rejuvenation efficiency; 3) Dynamic heterogeneity: Mechanical cycling broadens the relaxation time spectrum, reflecting increased dynamic heterogeneity.

     

    目录

    /

    返回文章
    返回